ஈருறுப்புக் குணகம்
கணிதத்தில் ஈருறுப்புக் குணகங்கள் அல்லது ஈருறுப்புக் கெழுக்கள் (Binomial coefficients) எனப்படுபவை, ஈருறுப்புத் தேற்றத்தில் கெழுக்களாக அமையும் நேர்ம முழு எண்களாகும். இக்கெழுக்கள் எதிர்மமல்லாத இரு நேர்ம எண்களால் எடுத்துரைக்கப்படலாம். n மற்றும் k ஆகிய இரு நேர்ம எண்களால் எடுத்துரைக்கப்படும் ஈருறுப்புக் கெழு வழமையாக என எழுதப்படும். இது (1+x)n என்ற ஈருறுப்புக் கோவையின் விரிவில் xkயின் கெழுவாகும். இதற்கான வாய்பாடு:


- பாகுபடுத்தல் தோல்வி (கூடுமாயின் MathML (சோதனை): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/ta.wikipedia.org/v1/":): {\displaystyle \binom{n}{k} = \frac{n!}{k! (n-k)!}.}
எடுத்துக்காட்டாக 1 + x இன் நான்காம் அடுக்கின் விரிவு:
- இவ்விரிவில் x2 இன் குணகம்:
nஇன் இயல்தகு பெறுமானங்களுக்கும், kயின் 0இலிருந்து n வரையான பெறுமானங்களுக்கும் உரிய ஈருறுப்புக் குணகங்களை வரிசையாக ஒழுங்குபடுத்தும்போது பெறப்படும் முக்கோணம் பாஸ்கலின் முக்கோணம் எனப்படும். பாசுகலின் முக்கோணத்தின் உறுப்புகள் கீழுள்ள மீள்வரும் தொடர்பை நிறைசெய்யும்:
ஈருறுப்புக் கெழுக்கள் கணிதத்தில் பல இடங்களில் குறிப்பாக, சேர்வியலில் இடம்பெறுகின்றன. ஆனது n உறுப்புகள் கொண்ட கணத்திலிருந்து k உறுப்புகளைத் தேர்வுசெய்யும் வழிகளின் எண்ணிக்கையைத் தருகிறது.
எடுத்துக்காட்டாக நான்கு உறுப்புகள் கொண்ட கணத்திலிருந்து பெறக்கூடிய ஈருறுப்புக் கணங்கள் அதாவது நான்கு உறுப்புகள் கொண்ட கணத்திலிருந்து இரு உறுப்புகளைத் தேர்வு செய்யக்கூடிய (உறுப்புகளின் வரிசையை கணக்கில் கொள்ளாமல்) வழிகளின் எண்ணிக்கை:
ஈருறுப்புக் கெழுக்களை சிக்கலெண்களுக்கும் (z ஒரு சிக்கல் எண்; k ≥ 0 ஒரு முழு எண்) எனப் பொதுமைப்படுத்தலாம். ஈருறுப்புக்கெழுக்களின் பெரும்பாலான பண்புகள் சிக்கலெண் அமைப்பிலும் உண்மையாக இருக்கும்.
வரையறை தொகு
n , k இரண்டும் இயல் எண்கள் எனில், (1 + X)n இன் விரிவிலுள்ள Xk இன் கெழுவாக வரையறுக்கப்படுகிறது. ஈருறுப்புத் தேற்றத்திலும் (k ≤ n)
- இன் கெழுவாக உள்ளது.
சேர்வியலில் ஆனது n பொருட்களிலிருந்து k பொருட்களைத் தேர்ந்தெடுக்கக்கூடிய (வரிசையை கணக்கில் கொள்ளாமல்) வழிகளின் எண்ணிக்கையாகும். அதாவது n-உறுப்புகள் கொண்ட கணத்திலிருந்து பெறக்கூடிய k-உறுப்புகள் கொண்ட உட்கணங்களின் எண்ணிக்கையாக இருக்கும்.
ஈருறுப்புக் கெழுக்களைக் கணக்கிடல் தொகு
ஈருறுப்புத் தேற்ற விரிவில்லாமல் இன் மதிப்பைக் கணக்கிடலாம்.
மீள்வரு வாய்பாடு தொகு
இதில் தொடக்கநிலை மதிப்புகள்:
பெருக்கல் வாய்பாடு தொகு
- பாகுபடுத்தல் தோல்வி (கூடுமாயின் MathML (சோதனை): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/ta.wikipedia.org/v1/":): {\displaystyle \binom nk = \frac{n^{\underline{k}}}{k!} = \frac{n(n-1)(n-2)\cdots(n-(k-1))}{k(k-1)(k-2)\cdots 1}=\prod_{i=1}^k \frac{n+1-i}{i},}
k , n − k இரண்டினைப் பொறுத்து ஈருறுப்புக் கெழுவின் சமச்சீர் அமைவால்
k , n − k சிறிய எண்ணை மேல் எல்லையாக எடுத்துக்கொண்டு கணக்கிடலை எளிதாக்கலாம்.
எடுத்துக்காட்டு:
தொடர் பெருக்கம் வாய்பாடு தொகு
இதில் n! என்பது n இன் தொடர் பெருக்கம்.
பெருக்கல் வாய்பாட்டின் தொகுதி, பகுதி இரண்டையும் (n − k)! ஆல் பெருக்குவதன் மூலம் இவ்வாய்பாடு பெறப்படுகிறது:
பாசுகலின் முக்கோணம் தொகு
கீழ்வரும் மீள்வரு தொடர்பு பாசுகலின் விதி என அழைக்கப்படுகிறது:
இவ்விதியைப் பயன்படுத்தி அமைக்கப்படும் முக்கோண வரிசையமைப்பு பாஸ்கலின் முக்கோணம் ஆகும்:
0: 1 1: 1 1 2: 1 2 1 3: 1 3 3 1 4: 1 4 6 4 1 5: 1 5 10 10 5 1 6: 1 6 15 20 15 6 1 7: 1 7 21 35 35 21 7 1 8: 1 8 28 56 70 56 28 8 1
பாசுகலின் முக்கோணத்தின் ஒவ்வொரு வரிசையின் முதல் மற்றும் இறுதி ஓர எண் 1 ஆக உள்ளது. ஒரு வரிசையின் குறிப்பிட்ட ஒரு உறுப்பானது அவ்வரிசைக்கு முந்தைய வரிசையில் அவ்வுறுப்புக்கு முந்தைய மற்றும் அடுத்துள்ள இரு உறுப்புகளின் கூடுதலாக அமையும். பாசுகலின் முக்கோண வரிசைகளை அமைப்பதன் மூலம் ஈருறுப்புக் கெழுக்களின் மதிப்புகளைக் கணக்கிடுதல் எளிமையாகிறது. எடுத்துக்காட்டாக பாசுகலின் முக்கோணத்தின் ஐந்தாவது வரிசையின் உறுப்புகள்
- விரிவில் வரும் ஈருறுப்புக் கெழுக்களாக அமைவதைக் காணலாம்.
சேர்வியல் மற்றும் புள்ளியியல் தொகு
சேர்வியலில் பல எண்ணுதல் கணக்குகளுக்கு ஈருப்புக்கெழுக்கள் வாய்பாடுகளைத் தருகின்றன:
- n உறுப்புகள் கொண்ட கணத்திலிருந்து k உறுப்புகளைத் தேர்வுசெய்யக்கூடிய வழிகளின் எண்ணிக்கை (சேர்வுகள்).
- n உறுப்புகள் கொண்ட கணத்திலிருந்து ஒரு உறுப்பை மீண்டும் தேர்வு செய்யலாம் என்ற அனுமதியுடன் k உறுப்புகளைத் தேர்வுசெய்யக்கூடிய வழிகளின் எண்ணிக்கை (பல்கணம்).
- k ஒன்றுகளும் n பூச்சியங்களும் கொண்ட சரங்களின் எண்ணிக்கை .
- எந்தவிரு சரங்களும் அடுத்ததடுத்தமையாத, k ஒன்றுகளும் n பூச்சியங்களும் கொண்ட சரங்களின் எண்ணிக்கை [1]
- கேடலான் எண்கள்
- புள்ளியியலின் ஈருறுப்புப் பரவல்
பல்லுறுப்புக்கோவைகளாக ஈருறுப்புக் கெழுக்கள் தொகு
- k இன் எந்தவொரு எதிர்மமல்லாத முழுஎண் மதிப்பிற்கும் -இதனைச் சுருக்கி தொகுதி ஒரு பல்லுறுப்புக்கோவையாகவும் பகுதி k! கொண்ட வடிவிற்கு மாற்றலாம்:
மேலுள்ள இன் வடிவமைப்பு விகிதமுறு எண்களைக் கெழுக்களாகக் கொண்டு t இல் அமைந்த ஒரு பல்லுறுப்புக்கோவை. k இன் ஒவ்வொரு மதிப்பிற்கும் இன் மேற்காணும் பல்லுறுப்புக்கோவை வடிவம் k படியுள்ள பல்லுறுப்புக்கோவை p(t) ஆக இருக்கும். மேலும் அது p(0) = p(1) = ... = p(k − 1) = 0 மற்றும் p(k) = 1 என்ற முடிவுகளையும் நிறைவு செய்யும்.
- இசுடர்லிங் சுழல் எண் மூலமாகவும் ஐ எழுதலாம்:
- The வகையிடல் of இன் வகைக்கெழுவை மடக்கை வகையிடலைப் பயன்படுத்திக் காணலாம்:
முழுவெண்-மதிப்பு பல்லுறுப்புக்கோவைகள் தொகு
இல் உள்ளிடப்படும் இன் ஒவ்வொரு முழுவெண் மதிப்பிற்கும் பெறப்படும் பல்லுறுப்புக்கோவை ஒவ்வொன்றும் முழுவெண் மதிப்புடையது. எனவே ஈருறுப்புக்கெழுக்களின் எந்தவொரு முழுவெண் நேரியல் சேர்வும் முழுவெண் மதிப்புடையது. மறுதலையாக எந்தவொரு முழுவெண் மதிப்புடைய பல்லுறுக்கோவையையும் ஈருறுப்புக்கெழுக்களின் முழுவெண் நேரியல் சேர்வாக எழுதலாம்.
எடுத்துக்காட்டு:
- 3t(3t + 1)/2 =
ஈருறுப்புக் கெழுக்களைக் கொண்ட முற்றொருமைகள் தொகு
k ஒரு முழு எண்; n ஏதேனுமொரு மதிப்பு எனில்:
- ( n மாறிலி)
ஈருறுப்புக் கெழுக்களின் கூட்டுத்தொகை தொகு
ஈருறுப்புத் தேற்றம்:
இதில் x = 1 and y = 1 எனப் பதிலிட மேலுள்ள வாய்பாடு கிடைக்கிறது. இதன்படி, பாசுகலின் முக்கோணத்தில் n ஆவது வரிசையிலுள்ள எண்களின் கூட்டுத்தொகை எப்பொழுதும் 2 இன் n ஆவது அடுக்காக இருக்கும்.
- n = 0; உறுப்புகளின் கூட்டுத்தொகை:
- n = 1; உறுப்புகளின் கூட்டுத்தொகை:
- n = 2; உறுப்புகளின் கூட்டுத்தொகை:
- n = 3; உறுப்புகளின் கூட்டுத்தொகை:
குறிப்புகள் தொகு
- ↑ Muir, Thomas (1902). "Note on Selected Combinations". Proceedings of the Royal Society of Edinburgh. https://books.google.com/?id=EN8vAAAAIAAJ&pg=GBS.PA102.
வெளியிணைப்புகள் தொகு
- Hazewinkel, Michiel, ed. (2001), "Binomial coefficients", Encyclopedia of Mathematics, Springer, ISBN 978-1556080104
- Andrew Granville (1997). "Arithmetic Properties of Binomial Coefficients I. Binomial coefficients modulo prime powers". CMS Conf. Proc 20: 151–162. http://www.cecm.sfu.ca/organics/papers/granville/Binomial/toppage.html. பார்த்த நாள்: 2013-09-03.