முக்கோணவியல்: திருத்தங்களுக்கு இடையிலான வேறுபாடு

776 பைட்டுகள் நீக்கப்பட்டது ,  5 ஆண்டுகளுக்கு முன்
:<math>\sin x = \frac{e^{ix} - e^{-ix}}{2i}, \qquad \cos x = \frac{e^{ix} + e^{-ix}}{2}, \qquad \tan x = \frac{i(e^{-ix} - e^{ix})}{e^{ix} + e^{-ix}}.</math>
 
== முக்கோணவியல் முற்றொருமைகளை நிரூபிக்க சில உத்திகள் ==
 
1)#தரப்பட்டுள்ளவை மற்றும் நிரூபணம் செய்யப்பட உள்ளவை பற்றி கவனமுடன் ஆராய்ந்து முற்றொருமைகளை ஊன்றி வாசித்திடுதல்கவனித்தல் அவசியம்.
2)முற்றொருமையில் #சிக்கல்கள் நிரம்பிய பகுதிகளை எடுத்துக்கொண்டு சுருக்குவதற்கு முன்னுரிமை அளித்தல் நல்லது.
 
3)#ஒருசில வேளைகளில் முற்றொருமையின் இரு புறங்களிலும் சிக்கல்கள் நிறைந்த கோவைகள் காணப்படும். அவற்றைத் தனித்தனிக் கோவைகளாகவே எடுத்துக்கொண்டு சுருக்கித் தீர்வு காணவேண்டும். பின்னர், அவ்விரண்டு கோவைகளையும் மறுபடியும் சுருக்கம் செய்து ஒற்றைக் கோவையாக்கித் தனித்தனியே பெறப்படுதல் சிறந்தது.
2)முற்றொருமையில் சிக்கல்கள் நிரம்பிய பகுதிகளை எடுத்துக்கொண்டு சுருக்குவதற்கு முன்னுரிமை அளித்தல் நல்லது.
4)#பல்லுறுப்புக் கோவைகளின் கூட்டலின்போது மேற்கொள்ளப்படும் இயற்கணித உத்திகளைப் பயன்படுத்தி,பயன்படுத்திப் பின்னங்களை ஒன்றிணைக்க முயற்சிக்க வேண்டும்.
 
5)#முற்றொருமையின் ஒவ்வொரு உறுப்பையும் தேவை ஏற்படும் பட்சத்தில் அதற்கு சமமாக உள்ள sineசைன்,cosine கொசைன் ஆக மாற்றி,மாற்றிப் பின் சுருக்கம் செய்தல் பயனுடையதாக இருக்கும்.
3)ஒருசில வேளைகளில் முற்றொருமையின் இரு புறங்களிலும் சிக்கல்கள் நிறைந்த கோவைகள் காணப்படும்.அவற்றைத் தனித்தனிக் கோவைகளாகவே எடுத்துக்கொண்டு சுருக்கித் தீர்வு காணவேண்டும்.பின்னர்,அவ்விரண்டு கோவைகளையும் மறுபடியும் சுருக்கம் செய்து ஒற்றைக் கோவையாக்கித் தனித்தனியே பெறப்படுதல் சிறந்தது.
 
4)பல்லுறுப்புக் கோவைகளின் கூட்டலின்போது மேற்கொள்ளப்படும் இயற்கணித உத்திகளைப் பயன்படுத்தி,பின்னங்களை ஒன்றிணைக்க முயற்சிக்க வேண்டும்.
 
5)முற்றொருமையின் ஒவ்வொரு உறுப்பையும் தேவை ஏற்படும் பட்சத்தில் அதற்கு சமமாக உள்ள sine,cosine ஆக மாற்றி,பின் சுருக்கம் செய்தல் பயனுடையதாக இருக்கும்.
 
6):<math>\tan^2θ,:<math>\cot^2θ, :<math>\cosec^2θ,:<math>\sec^2θ ஆகிய உறுப்புகளுடன் கூடிய முற்றொருமையினை
:<math>\sec^2θ=1+:<math>\tan^2θ மற்றும்
:<math>\cosec^2θ =1+:<math>\cot^2θ ஆகிய எளிய வாய்ப்பாடுகளைக் கையாண்டு தீர்க்க முயற்சிக்க வேண்டும்.<ref>{{cite book | title=கணிதம் பத்தாம் வகுப்பு தொகுதி இரண்டு | publisher=தமிழ்நாட்டுப் பாடநூல் நிறுவனம் | year=2016 | pages=208}}</ref>
 
==உயரங்கள் மற்றும் தூரங்களை அளவிடல்==
"https://ta.wikipedia.org/wiki/சிறப்பு:MobileDiff/2304912" இருந்து மீள்விக்கப்பட்டது