இடவியல் உருமாற்றம்: திருத்தங்களுக்கு இடையிலான வேறுபாடு

உள்ளடக்கம் நீக்கப்பட்டது உள்ளடக்கம் சேர்க்கப்பட்டது
சி தானியங்கி மாற்றல்: fa:هم‌ریختی
சி தானியங்கிஇணைப்பு: bg:Хомеоморфизъм; cosmetic changes
வரிசை 1:
ஒரு [[வடிவியல்]] படத்தை உருமாற்றும்போது, படத்தின் ஒவ்வொரு பாகத்திலும் [[அண்மை]] என்ற உறவு பாதிக்கப் படாமலிருந்தால் அந்த உருமாற்றம் [[தொடர் உருமாற்றம்]] எனப் பெயர் பெறும். அண்மைகள் அழியாதது மட்டுமல்ல, புது அண்மைகள் தோன்றாமலுமிருந்தால், அவ்வுருமாற்றம் '''இடவியல் உருமாற்றம்''' எனப் பெயர் பெறும். இவ்வுருமாற்றங்களைப் பற்றிய இயல்தான் [[இடவியல்]].
 
== இடவியல் உருமாற்றத்தின் இலக்கணம் ==
 
ஆக, ஒரு படம் இடவியல் உருமாற்றத்திற்கு உள்ளாகும்போது படத்தின் எந்தெந்த பாகங்கள் ஒன்றுக்கொன்று தொட்டுக் கொண்டிருக்கின்றனவோ அவை தொடுகையிலேயே இருக்கும்; எவை தொட்டுக் கொண்டில்லையோ அவை தொடாமலேயே இருக்கும். சுருங்கச் சொன்னால், இடவியல் உருமாற்றத்தினால் படம் உடைபடாது, புதிய சேர்க்கைகள் ஏற்படாது. குறிப்பாக இரண்டு தனித்தனிப் புள்ளிகள் தனித்தனியாகவே இருக்கும். படத்தை புள்ளிகளின் [[கணம்|கணமாகப்]] பார்த்தால், இடவியல் உருமாற்றம் என்பது ஒரு [[ஒன்றுக்கொன்றான இயைபுடைய]] உருமாற்றமாகவும், இரண்டு திசையிலும் தொடர் மாற்றமாகவும் இருந்தாகவேண்டும்.
வரிசை 7:
இரு இடவியல் வெளிகளுக்கிடையில் இப்படி ஒரு இடவியல் உருமாற்றம் இருக்குமேயானால் அவை '''இடவியல் சமானமுள்ளவை''' (topologically equivalent) அல்லது '''முழுமைத் தொடரமைவுள்ளவை''' (homeomorphic) என்று சொல்லப்படும். இடவியல் சமானம் என்பது ஒரு [[சமான உறவு (கணிதம்)|சமான உறவு]].
 
== ஓர் எளிய எடுத்துக்காட்டு ==
[[படிமம்: TT fig 1.png|right|400x400px]]
[[படிமம்: TT fig 2.png|right|400px]]
A என்பது ஒரு வளைகோட்டில், காட்டப்பட்ட பாகத்திலுள்ள எல்லாப் புள்ளிகளும் சேர்ந்த கணம். இயற்கையாக அதற்குள்ள இடவியலை வைத்துக்கொள்வோம். [[இயற்கை இடவியல்]] என்றால், வடிவியல் முறையில் ஒரு புள்ளி p ஐச்சுற்றி ஒரு வட்டம் வரைந்தால் அவ்வட்டத்திற்குள் A இலுள்ள புள்ளிகள் p க்கு அந்த அண்மையில் இருப்பதாகப் பொருள். இவ்விதம் p க்கு ஒரு அண்மைக்கூட்டமே இருக்கும்.
 
B என்பது ஒருநேர்கோட்டில் காட்டப்பட்ட பாகத்திலுள்ள எல்லாப் புள்ளிகளும் சேர்ந்த கணம். இதற்கும் ஒரு இயற்கை இடவியல் இருப்பதாகக் கொள்ளலாம்.
 
A யும் B யும் இடவியல் சமானமானது. ஏனென்றால், முதலில் அவைகளுக் கிடையில் ஒன்றுக்கொன்றான இயைபு உள்ளது. இதைப் பலவிதத்தில் பார்க்கலாம். மிகவும் எளிதாக மனதில் படுவது, (படிமம் 1இல் காட்டப் பட்டிருப்பது) வளை கோட்டிலிருந்து கீழே இருக்கும் நேர்கோட்டிற்கு ஒரு செங்குத்தான வீழ்ப்பு தான். அதாவது, p க்கு ஒத்த புள்ளி அதற்கு நேர் கீழே உள்ள f(p) . மேலும் இந்த [[கோப்பு]] (map) f ஒரு தொடர் கோப்பு, ஏனேன்றால் p இனுடைய அண்மையில் இல் இருக்கும் புள்ளிகள் B இல் f(p) இன் அண்மையில் இருக்கும் புள்ளிகளுக்குப் போகின்றன. எதிர் திசையிலும் f(p) இன் அண்மையில் இருக்கும் புள்ளிகள் p இன் அண்மைக்குச் செல்கின்றன. இவ்விதம் அண்மைகள் காக்கப்படுகின்றன என்பதை துல்லியமாகச் செயல்முறையில் காட்டவேண்டிய வேலை இடவியலுடையது.
 
ஆக, A யும் B யும் முழுத் தொடரமைவியமுள்ளன.
 
== வெளியின் உருவம் முக்கியமல்ல ==
[[படிமம்: TT fig 3.png|right|400px]]
இடவியலர்கள் ஒரு வெளியின் உருவத்தைப் பற்றி கவலைப் படுவதில்லை. அதன் இடவியல் தான் அவர்களுடைய கருத்தைக் கவர்வது. எடுத்துக்காட்டாக, (படிமம் 2 ஐப்பார்க்கவும்) ஒரு முக்கோணம், ஒரு வட்டம், ஒரு மூடிய வளைவு எல்லாம் அவர்களுக்கு ஒன்றுதான்.
ஆனால் ஒரு வட்டமும் ஒரு நேர்கோடும் இடவியல் சமானமல்ல. ஏனேன்றால் வட்டத்தை வெட்டினால் தான் அதை நேர்கோட்டாக்க முடியும். மேலும், நேர்கோட்டை வட்டமாக்குவதற்கு (படிமம் 3 ஐப்பார்க்கவும்)நேர்கோட்டின் p, q என்ற ஓரப்புள்ளிகளை ஒன்றுசேர்க்க வேண்டும். இதனால் இரண்டு விதத்தில் உருமாற்றம் தொடரமைவியத்தை இழக்கிறது. முதலில், p, q இரண்டும் வட்டத்தில் ஒரே புள்ளிக்குப் போவதால் ஒன்றுக்கொன்றான இயைபு சிதைவடைகிறது. மற்றும், p க்கும் q க்கும் C இல் இரண்டு தொட்டுக் கொள்ளாத அண்மைகள் இருக்கமுடியும், ஆனால் D இல் அவையிரண்டும் ஒரே புள்ளிக்குப் போவதால் அவ்வாறு தனித்தனி அண்மைகள் இருக்க முடியாது. ஆகையால் C யும் D யும் ஒருபோதும் இடவியல் சமானமாகாது.
 
== இடவியல் ரப்பர் வடிவியலல்ல ==
[[படிமம்: TT fig 4.png|right|400px]]
இடவியல் உருமாற்றங்கள் ரப்பராலான வடிவங்களுடைய உருமாற்றங்கள் போல் தான் என்று நினைப்பதில் ஒரு அரை உண்மை உள்ளது. ஆனால் அதற்காக ஒவ்வொரு இடவியல் உருமாற்றமும் ரப்பர் வடிவ உருமாற்றமாகத்தான் இருக்கவேண்டும் என்பது சரியல்ல. ஏனேன்றால் ரப்பர் வடிவ உருமாற்றம் என்ற கருத்தே முப்பரிமாண உருவங்களுக்குத்தான் செல்லுபடியாகும். ஆனால் இடவியலில் பரிமாணங்கள் மூன்றைத் தாண்டி [[முடிவிலி]] வரையில் செல்லும்.
வரிசை 30:
இது ஒரு முடிச்சு. இதுவும் முடிச்சில்லாத வளையமும் இடவியல் சமானமுள்ளது என்பதைப் புரிந்துகொள்ள, முடிச்சில் ஏதாவது ஒரு இடத்தில் வெட்டி, முடிச்சை அவிழ்த்து அதே இடத்தில் ஒன்று சேர்த்தால் முடிச்சில்லாத வளையம் வரும். இம்மாற்றம் தொடரமைவியத்தின் இரு நிபந்தனைகளையும் ஒப்புகிறது என்பதை சற்று யோசித்தால் விளங்கும்.
 
== இவற்றையும் பார்க்கவும் ==
==துணை நூல்கள்==
 
* Siefert, H and W. Threlfall. (1980) ''A Textbook of topology''. Tr. By M.A. Goldman. Academic Press. New York,
* V. Krishnamurthy. (1990). ''Culture, Excitement and Relevance of Mathematics''. Wiley Eastern Ltd. New Delhi. ISBN 81-224-0272-0
 
[[பகுப்பு: சார்புப் பகுவியல்]]
[[பகுப்பு: இடவியல்]]
 
[[ar:دالة هميومورفية]]
[[bg:Хомеоморфизъм]]
[[ca:Homeomorfisme]]
[[cs:Homeomorfismus]]
"https://ta.wikipedia.org/wiki/இடவியல்_உருமாற்றம்" இலிருந்து மீள்விக்கப்பட்டது