இராமானுசன் கூட்டு
- இக்கட்டுரை இராமானுசன் கூட்டுகை (Ramanujan summation) என்பது பற்றியது அன்று
கணிதத்தின் ஒரு பிரிவான எண்கோட்பாட்டியலில், இராமானுசன் கூட்டு (Ramanujan's sum), என்பதைப் பொதுவாக cq(n), எனக்குறிப்பது வழக்கம். இது நேர்ம எண் மாறிகள் q, n ஆகியவற்றால் ஆன சார்பியம் (சார்பு). இதனைக் கீழ்க்காணும் சூத்திரத்தால் குறிக்கலாம்
மேலுள்ளதில் (a, q) = 1 என்னும் குறியீடு என்ன குறிக்கின்றதென்றால், a என்பது q என்னும் எண்ணோடு ஒப்பீட்டு பகா எண்ணின் (co-prime) மதிப்புகளை மட்டுமே கொள்ளும் என்று பொருள்.
சீனிவாச இராமானுசன் இந்த கூட்டு வாய்பாட்டை 1918 ஆய்வுத்தாளில் அளித்தார்[1] இக் கூட்டு வாய்பாட்டினை வினோகிராடோவ் தேற்றத்தை(Vinogradov's theorem)நிறுவுவதில் பயன்படுத்தியுள்ளார்கள். இத்தேற்றம் மிகப்பெரிய ஒற்றைப்படை எண்கள் ஒவ்வொன்றும் மூன்று பகா எண்களின் கூட்டுத்தொகை என கூறுகின்றது[2]
இராமானுசன் கூட்டு அட்டவணை
தொகுn | |||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | ||
s | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
2 | −1 | 1 | −1 | 1 | −1 | 1 | −1 | 1 | −1 | 1 | −1 | 1 | −1 | 1 | −1 | 1 | −1 | 1 | −1 | 1 | −1 | 1 | −1 | 1 | −1 | 1 | −1 | 1 | −1 | 1 | |
3 | −1 | −1 | 2 | −1 | −1 | 2 | −1 | −1 | 2 | −1 | −1 | 2 | −1 | −1 | 2 | −1 | −1 | 2 | −1 | −1 | 2 | −1 | −1 | 2 | −1 | −1 | 2 | −1 | −1 | 2 | |
4 | 0 | −2 | 0 | 2 | 0 | −2 | 0 | 2 | 0 | −2 | 0 | −2 | 0 | 2 | 0 | −2 | 0 | 2 | 0 | −2 | 0 | −2 | 0 | 2 | 0 | −2 | 0 | 2 | 0 | −2 | |
5 | −1 | −1 | −1 | −1 | 4 | −1 | −1 | −1 | −1 | 4 | −1 | −1 | −1 | −1 | 4 | −1 | −1 | −1 | −1 | 4 | −1 | −1 | −1 | −1 | 4 | −1 | −1 | −1 | −1 | 4 | |
6 | 1 | −1 | −2 | −1 | 1 | 2 | 1 | −1 | −2 | −1 | 1 | 2 | 1 | −1 | −2 | −1 | 1 | 2 | 1 | −1 | −2 | −1 | 1 | 2 | 1 | −1 | −2 | −1 | 1 | 2 | |
7 | −1 | −1 | −1 | −1 | −1 | −1 | 6 | −1 | −1 | −1 | −1 | −1 | −1 | 6 | −1 | −1 | −1 | −1 | −1 | −1 | 6 | −1 | −1 | −1 | −1 | −1 | −1 | 6 | −1 | −1 | |
8 | 0 | 0 | 0 | −4 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | −4 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | −4 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | −4 | 0 | 0 | |
9 | 0 | 0 | −3 | 0 | 0 | −3 | 0 | 0 | 6 | 0 | 0 | −3 | 0 | 0 | −3 | 0 | 0 | 6 | 0 | 0 | −3 | 0 | 0 | −3 | 0 | 0 | 6 | 0 | 0 | −3 | |
10 | 1 | −1 | 1 | −1 | −4 | −1 | 1 | −1 | 1 | 4 | 1 | −1 | 1 | −1 | −4 | −1 | 1 | −1 | 1 | 4 | 1 | −1 | 1 | −1 | −4 | −1 | 1 | −1 | 1 | 4 | |
11 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | 10 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | 10 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | |
12 | 0 | 2 | 0 | −2 | 0 | −4 | 0 | −2 | 0 | 2 | 0 | 4 | 0 | 2 | 0 | −2 | 0 | −4 | 0 | −2 | 0 | 2 | 0 | 4 | 0 | 2 | 0 | −2 | 0 | −4 | |
13 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | 12 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | 12 | −1 | −1 | −1 | −1 | |
14 | 1 | −1 | 1 | −1 | 1 | −1 | −6 | −1 | 1 | −1 | 1 | −1 | 1 | 6 | 1 | −1 | 1 | −1 | 1 | −1 | −6 | −1 | 1 | −1 | 1 | −1 | 1 | 6 | 1 | −1 | |
15 | 1 | 1 | −2 | 1 | −4 | −2 | 1 | 1 | −2 | −4 | 1 | −2 | 1 | 1 | 8 | 1 | 1 | −2 | 1 | −4 | −2 | 1 | 1 | −2 | −4 | 1 | −2 | 1 | 1 | 8 | |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −8 | 0 | 0 | 0 | 0 | 0 | 0 | |
17 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | 16 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | |
18 | 0 | 0 | 3 | 0 | 0 | −3 | 0 | 0 | −6 | 0 | 0 | −3 | 0 | 0 | 3 | 0 | 0 | 6 | 0 | 0 | 3 | 0 | 0 | −3 | 0 | 0 | −6 | 0 | 0 | −3 | |
19 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | 18 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | |
20 | 0 | 2 | 0 | −2 | 0 | 2 | 0 | −2 | 0 | −8 | 0 | −2 | 0 | 2 | 0 | −2 | 0 | 2 | 0 | 8 | 0 | 2 | 0 | −2 | 0 | 2 | 0 | −2 | 0 | −8 | |
21 | 1 | 1 | −2 | 1 | 1 | −2 | −6 | 1 | −2 | 1 | 1 | −2 | 1 | −6 | −2 | 1 | 1 | −2 | 1 | 1 | 12 | 1 | 1 | −2 | 1 | 1 | −2 | −6 | 1 | −2 | |
22 | 1 | −1 | 1 | −1 | 1 | −1 | 1 | −1 | 1 | −1 | −10 | −1 | 1 | −1 | 1 | −1 | 1 | −1 | 1 | −1 | 1 | 10 | 1 | −1 | 1 | −1 | 1 | −1 | 1 | −1 | |
23 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | 22 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | |
24 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | −4 | 0 | 0 | 0 | −8 | 0 | 0 | 0 | −4 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 8 | 0 | 0 | 0 | 4 | 0 | 0 | |
25 | 0 | 0 | 0 | 0 | −5 | 0 | 0 | 0 | 0 | −5 | 0 | 0 | 0 | 0 | −5 | 0 | 0 | 0 | 0 | −5 | 0 | 0 | 0 | 0 | 20 | 0 | 0 | 0 | 0 | −5 | |
26 | 1 | −1 | 1 | −1 | 1 | −1 | 1 | −1 | 1 | −1 | 1 | −1 | −12 | −1 | 1 | −1 | 1 | −1 | 1 | −1 | 1 | −1 | 1 | −1 | −1 | 12 | 1 | −1 | 1 | −1 | |
27 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 18 | 0 | 0 | 0 | |
28 | 0 | 2 | 0 | −2 | 0 | 2 | 0 | −2 | 0 | 2 | 0 | −2 | 0 | −12 | 0 | −2 | 0 | 2 | 0 | −2 | 0 | 2 | 0 | −2 | 0 | 2 | 0 | 12 | 0 | 2 | |
29 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | 28 | −1 | |
30 | −1 | 1 | 2 | 1 | 4 | −2 | −1 | 1 | 2 | −4 | −1 | −2 | −1 | 1 | −8 | 1 | −1 | −2 | −1 | −4 | 2 | 1 | −1 | −2 | 4 | 1 | 2 | 1 | −1 | 8 |
அடிக்குறிப்புகள்
தொகு- ↑ Ramanujan, On Certain Trigonometric Sums ...
(Papers, p. 179). In a footnote cites pp. 360–370 of the Dirichlet-Dedekind Vorlesungen über Zahlentheorie, 4th ed.These sums are obviously of great interest, and a few of their properties have been discussed already. But, so far as I know, they have never been considered from the point of view which I adopt in this paper; and I believe that all the results which it contains are new.
- ↑ Nathanson, ch. 8
உசாத்துணையும் நூற்பட்டியலும்
தொகு- Hardy, G. H. (1999), Ramanujan: Twelve Lectures on Subjects Suggested by his Life and Work, Providence RI: AMS / Chelsea, பன்னாட்டுத் தரப்புத்தக எண் 978-0821820230
- Hardy, G. H.; Wright, E. M. (1980), An Introduction to the Theory of Numbers (Fifth edition), Oxford: ஒக்ஸ்போர்ட் பல்கலைக்கழகப் பதிப்பகம், பன்னாட்டுத் தரப்புத்தக எண் 978-0198531715
- Knopfmacher, John (1990), Abstract Analytic Number Theory, New York: Dover, பன்னாட்டுத் தரப்புத்தக எண் 0-486-66344-2
- Nathanson, Melvyn B. (1996), Additive Number Theory: the Classical Bases, Graduate Texts in Mathematics, vol. 164, Springer-Verlag, பன்னாட்டுத் தரப்புத்தக எண் 0-387-94656-X Section A.7.
- Ramanujan, Srinivasa (1918), "On Certain Trigonometric Sums and their Applications in the Theory of Numbers", Transactions of the Cambridge Philosophical Society, 22 (15): 259–276 (pp. 179–199 of his Collected Papers)
- Ramanujan, Srinivasa (1916), "On Certain Arithmetical Functions", Transactions of the Cambridge Philosophical Society, 22 (9): 159–184 (pp. 136–163 of his Collected Papers)
- Ramanujan, Srinivasa (2000), Collected Papers, Providence RI: AMS / Chelsea, பன்னாட்டுத் தரப்புத்தக எண் 978-0821820766