கணிதத்தில்பல்லுறுப்புத் தேற்றம் (multinomial theorem) என்பது ஒரு கூட்டுத்தொகையின் அடுக்கினை அக்கூட்டுத்தொகையிலுள்ள உறுப்புகளின் அடுக்குகளின் மூலம் எவ்வாறு விரித்தெழுதலாம் என விளக்குகிறது. இத்தேற்றம் ஈருறுப்புத் தேற்றத்தின் பொதுமைப்படுத்தலாகும்.
m ஒரு நேர்ம முழு எண்; n ஒரு எதிர்மமல்லா முழு எண் எனில்:
இதில் ஒரு "பல்லுறுப்புக் கெழு" அல்லது "பல்லுறுப்புக் குணகம்" ஆகும்.
இந்த விரிவின் ஒவ்வொரு உறுப்பிலுமுள்ள xi இன் அடுக்குகளின் கூட்டுத்தொகை n ஆக இருக்கும். மேலும் ஈருறுப்புத் தேற்றத்தைப் போலவே இத்தேற்றத்திலும் x0 என்ற வடிவிலுள்ளவற்றின் மதிப்பு 1 ஆக எடுத்துக்கொள்ளப்படும் (x = 0 ஆக இருந்தாலும் கூட).
m = 2 ஆக இருக்கும் போது பல்லுறுப்புத் தேற்றமானது ஈருறுப்புத் தேற்றமாகிவிடும்.
மூவுறுப்புக்கோவை a + b + c இன் மூன்றடுக்கின் விரிவு:
இன் விரிவை கூட்டலின் மீதான பங்கீட்டுப் பண்பைப் பயன்படுத்திக் காணமுடியும். என்றாலும் பல்லுறுப்புத் தேற்றத்தைப் பயன்படுத்தி விரிவுபடுத்தல் எளிதாக இருக்கும். ஏனென்றால் இத்தேற்றத்தின்படி பல்லுறுப்புக் கெழுக்களைக் கணக்கிடல் எளிதானது. எடுத்துக்காட்டாக:
பல்லுறுப்புத் தேற்றத்தின் வலப்பக்க விரிவில் இடம்பெறும் உறுப்புக்களின் எண் கெழுக்கள் : "பல்லுறுப்புக் கெழுக்கள்" அல்லது "பல்லுறுப்புக் குணகங்கள்" என அழைக்கப்படுகின்றன. இவற்றின் வாய்பாடு:
பல்லுறுப்புக் கெழுக்களின் கூட்டுத்தொகை:
பல்லுறுப்புத் தேற்றத்தின் விரிவிலுள்ள எல்லா உறுப்புகளின் கெழுக்களின் கூடுதல்:
விளக்கம்:
பல்லுறுப்புத் தேற்றம்:
இதில் எனப் பதிலிட:
சேர்வியல் விளக்கம்:
பல்லுறுப்புக் கெழுக்களின் மதிப்பு வெவ்வேறான n பொருட்களை, வெவ்வேறான m பெட்டிகளில் போடும் வழிகளின் எண்ணிக்கைக்குச் சமமாகும். இதில், முதல் பெட்டியில் k1 பொருட்களும் இரண்டாவது பெட்டியில் k2 பொருட்களும் மூன்றாவது பெட்டியில் k3 பொருட்கள் என்று பொருட்கள் பெட்டிகளில் போடப்பட வேண்டும்[1]