உட்குலம் (கணிதம்)

கணிதத்தில் ஈருறுப்புச் செயலி * ஐப் பொறுத்த ஒரு குலம் G இன் உட்கணம் H ஆனது அதே ஈருறுப்புச் செயலி  * ஐப் பொறுத்து குலமாக அமையுமானால் G இன் உட்குலம் (subgroup) எனப்படும். இது குறியீட்டில் HG எனக் குறிக்கப்பட்டு, "H ஆனது G இன் உட்குலம்" என வாசிக்கப்படுகிறது.

G இன் தகு உட்கணமாக H (HG) இருந்தால், H ஒரு தகு உட்குலம் எனப்படும். எந்த ஒரு குலத்துக்கும் அதன் முற்றொருமை உறுப்பை மட்டும் கொண்ட கணம் {e} மிக எளியதொரு உட்குலமாகும் (trivial subgroup).

அடிப்படைப் பண்புகள்

தொகு
  • G குலத்தின் ஒரு உட்கணம் H அடைவுப் பண்பும் நேர்மாறு உறுப்புகளும் கொண்டிருந்தால், இருந்தால் மட்டுமே, H , G இன் உட்குலமாகும்.
  • குலத்தின் முற்றொருமை உறுப்பே உட்குலத்தின் முற்றொருமை உறுப்பாக இருக்கும்.
  • உட்குலத்தின் ஒவ்வொரு உறுப்பின் நேர்மாறும், குலத்தில் அதன் நேர்மாறாகவே இருக்கும்.
  • ஒரு குலத்தின் இரு உட்குலங்கள் A , B எனில் அவற்றின் வெட்டுக்கணமும் அதே குலத்தின் உட்குலமாக இருக்கும்.[1] ஆனால் அவை இரண்டில் ஏதாவது ஒன்று மற்றொன்றின் உட்கணமாக இருந்தால், இருந்தால் மட்டுமே அவற்றின் ஒன்றிப்பு கணம் உட்குலமாக இருக்கும்.
  • G இன் ஒரு உட்கணம் S எனில், S ஐ அடக்கிய அனைத்து உட்குலங்களின் வெட்டுக்கணமானது, S ஐ அடக்கிய மிகச்சிறிய உட்குலமாக அமையும். இந்த மிகச்சிறிய உட்குலம், S ஆல் பிறப்பிக்கப்பட்ட உட்குலம் எனப்படும். இதன் குறியீடு <S>.
  • G இன் ஒவ்வொரு உறுப்பும் (a) ஒரு சுழற் குலத்தைப் பிறப்பிக்கும் (<a>). Z/nZ உடன் சம அமைவியமுடையதாக <a> இருந்தால், an = e என அமையும் மிகச்சிறிய நேர் எண் n , a இன் வரிசை (கிரமம்) எனப்படும். Z உடன் சம அமைவியமுடையதாக <a> இருந்தால், a இன் வரிசை முடிவிலி ஆகும்..
  • G குலத்தின் முற்றொருமை உறுப்பு e எனில், {e} ஆனது G இன் மிக எளிய உட்குலம். G ஆனது G இன் மிகப் பெரிய உட்குலம்.
  • லாக்ராஞ்சி தேற்றத்தின்படி, ஒரு முடிவுறு குலத்தின் வரிசையை அதன் ஒவ்வொரு உட்குலத்தின் வரிசையும் சரியாக வகுக்கும்; அதாவது மீதமின்றி வகுக்கும்.
  • H இன் இடது இணைக்கணமும் வலது இணைக்கணமும் சமமாக இருந்தால், அதாவது:
    எனில் H இயல்நிலை உட்குலம் எனப்படும்.
  • முடிவுறுகுலம் G இன் வரிசையை மீதியின்றி வகுக்கும் மிகச்சிறிய பகா எண் p ஐக் குறியெண்ணாகக் கொண்டு ஒரு உட்குலம் G -க்கு இருந்தால் அது இயல்நிலை உட்குலமாகும்.

எடுத்துக்காட்டு: Z8 இன் உட்குலங்கள்

தொகு
  இது ஈருறுப்புச் செயலி கூட்டல் மாடுலோ 8 ஐப் பொறுத்து ஒரு சுழற் குலமாகும். இதற்குரிய கெய்லி அட்டவணை:
+ 0 2 4 6 1 3 5 7
0 0 2 4 6 1 3 5 7
2 2 4 6 0 3 5 7 1
4 4 6 0 2 5 7 1 3
6 6 0 2 4 7 1 3 5
1 1 3 5 7 2 4 6 0
3 3 5 7 1 4 6 0 2
5 5 7 1 3 6 0 2 4
7 7 1 3 5 0 2 4 6

இக்குலத்திற்கு மிகஎளியதல்லாத இரு உட்குலங்கள் J = {0,4} , H = {0,2,4,6} உள்ளன. இவற்றுள் H இன் உட்குலமாக J உள்ளது. மேலுள்ள கெய்லி அட்டவணையின் இடதுமேற் காற்பகுதி H இன் கெய்லி அட்டவணையாகும். G ஒரு சுழற் குலமாக இருப்பதால் H, J இரண்டும் சுழற் குலங்கள். பொதுவாக ஒரு சுழற் குலத்தின் உட்குலங்கள் எல்லாம் சுழற் குலங்களாகவே இருக்கும்.

எடுத்துக்காட்டு: S4 இன் உட்குலங்கள்

தொகு

ஒரு குலத்திற்கு அதன் கெய்லி அட்டவணையின் முதன்மை மூலைவிட்டத்திலுள்ள முற்றொருமை உறுப்புகளின் எண்ணிக்கையளவு உட்குலங்கள் இருக்கும்.

 
நான்கு உறுப்புகளின் அனைத்து வரிசை மாற்றங்களைக் காட்டும் சமச்சீர் குலம் S4
 
Hasse diagram of the lattice of subgroups of S4

12 உறுப்புகள்

தொகு
 
இரட்டை வரிசை மாற்றங்களை மட்டும் கொண்ட மாறிசைக்குலம் A4

உட்குலங்கள்:
 
      

8 உறுப்புகள்

தொகு
 
வரிசை 8 கொண்ட இருமுகக் குலம்

உட்குலங்கள்:
   
 
 
வரிசை 8 கொண்ட இருமுகக் குலம்

உட்குலங்கள்:
   
 
 
Dihedral group of order 8

Subgroups:
   

6 உறுப்புகள்

தொகு
 
சமச்சீர் குலம் S3

உட்குலம்: 
 
சமச்சீர் குலம் S3

உட்குலம்: 
 
சமச்சீர் குலம் S3

உட்குலம்: 
 
சமச்சீர் குலம் S3

உட்குலம்: 

4 உறுப்புகள்

தொகு
 
கிளைன் நான்குறுப்புக்குலம்
 
கிளைன் நான்குறுப்புக்குலம்
 
கிளைன் நான்குறுப்புக்குலம்
 
கிளைன் நான்குறுப்புக்குலம்
 
சுழற் குலம் Z4
 
சுழற் குலம் Z4
 
சுழற் குலம் Z4

மூன்று உறுப்புகள்

தொகு
 
சுழற் குலம் Z3
 
சுழற் குலம் Z3
 
சுழற் குலம் Z3
 
சுழற் குலம் Z3

மேற்கோள்கள்

தொகு
  1. Jacobson (2009), p. 41
  • Jacobson, Nathan (2009), Basic algebra, vol. 1 (2nd ed.), Dover, பன்னாட்டுத் தரப்புத்தக எண் 978-0-486-47189-1.
"https://ta.wikipedia.org/w/index.php?title=உட்குலம்_(கணிதம்)&oldid=2745844" இலிருந்து மீள்விக்கப்பட்டது