தொடர் விரிவு
கணிதத்தில், தொடர் விரிவு (series expansion) என்பது அடிப்படை கணிதச் செயல்களால் (கூட்டல், கழித்தல், பெருக்கல், வகுத்தல்) விவரிக்க முடியாத ஒரு சார்பினைக் கணக்கிடும் முறையாகும்.
அவ்வாறு கணக்கிடும்போது கிடைக்கும் தொடரை முடிவுறு உறுப்புகளைக் கொண்டதாக மட்டுப்படுத்திச் சார்பினை தோராயப்படுத்தலாம். தொடரில் எடுத்துக்கொள்ளப்படும் உறுப்புகளின் எண்ணிக்கை குறைந்தளவாக இருப்பதைப் பொறுத்து தோராயமாக்கப்படல் எளிதாகும்.
எடுத்துக்காட்டுகள்
தொகு- ஒரு சார்புக்கு, தனிப்பட்டதொரு புள்ளியில் காணப்படும் வகைக்கெழுக்களில் அமைந்த அடுக்குத் தொடராகும்
- டெய்லர் தொடரின் ஒரு சிறப்பு வகையாகும். இதில் சார்பின் வகைக்கெழுக்கள் பூச்சியத்தில் காணப்படுகின்றன
- லாரெண்ட் தொடர்:
- எதிர்ம அடுக்குகளுக்கு நீட்டிக்கப்பட்ட டெய்லர் தொடர்
- இது எண் கோட்பாட்டில் பயன்படுத்தப்படுகிறது.
- ஃபூரியே தொடர்:
- காலமுறைச் சார்புகளை சைன், கொசைன்களில் அமைந்த தொடராகத் தருகிறது.
- நியூட்டேனியத் தொடர்