திசையிலி முப்பெருக்கம்
வெக்டர் இயற்கணிதத்தில் திசையிலி முப்பெருக்கம் (scalar triple product) என்பது தரப்பட்ட மூன்று திசையன்களில் முதலில் ஏதேனும் இரு திசையன்களின் குறுக்குப் பெருக்கம் கண்டுபிடித்துக் கொண்டு பின் அதன் விளைவாகக் கிடைக்கும் திசையனுடன் மூன்றாவது திசையனின் புள்ளிப் பெருக்கம் காண்பதாகும்.
குறியீடு
தொகுதரப்பட்ட மூன்று திசையன்கள் a, b, c எனில் அவற்றின் திசையிலி முப்பெருக்கத்தின் வழக்கமான குறியீடு:
இம்முப்பெருக்கத்தின் மதிப்பு ஒரு திசையிலியாக அமைவதால் இது திசையிலி முப்பெருக்கம் என அழைக்கப்படுகிறது.
இதனைப் பின்வரும் குறியீட்டிலும் எழுதலாம்.
இவ்வாறு பெட்டி அடைப்புக்குறிக்குள் தரப்படுவதால் இம்முப்பெருக்கம், பெட்டிப்பெருக்கம் எனவும் அழைக்கப்படுகிறது.
இம்முப்பெருக்கத்தில் புள்ளிப் பெருக்கம் மற்றும் குறுக்குப் பெருக்கல் இரண்டும் உள்ளதால், இது கலப்புப் பெருக்கம் எனவும் அழைக்கப்படும்.
வடிவவியல் விளக்கம்
தொகுமூன்று திசையன்களின் திசையிலி முப்பெருக்கத்தின் தனிமதிப்பு அம்மூன்று திசையன்களால் அமையும் இணைகரத்திண்மத்தின் கன அளவாகும்.
விளக்கம்
தொகுதிசையன்கள் a = (a1, a2, a3), b = (b1, b2, b3) மற்றும் c = (c1, c2, c3) ஆகிய மூன்றையும் ஒரு முனை விளிம்புகளாகக் கொண்டு அமையும் இணைகரத்திண்மத்தின் கனஅளவு, இம்மூன்று திசையன்களின் திசையிலி முப்பெருக்கம் a · (b × c) -ன் தனிமதிப்பாகும்:
b மற்றும் c -இரண்டையும் இணைகரத்திண்மத்தின் அடிப்பக்க இணைகரத்தின் அடுத்துள்ள விளிம்புகளாகக் கொண்டால், குறுக்குப் பெருக்கத்தின் வடிவவியல் விளக்கத்தின்படி:
- A = |b| |c| sin θ = |b × c|,
இங்கு θ , b மற்றும் c -இவற்றுக்கு இடையே உள்ள கோணம்.
இணைகரத்திண்மத்தின் உயரம்:
- h = |a| cos α,
இங்கு α , a மற்றும் h -இவற்றுக்கு இடையே உள்ள உட்கோணம்.
படத்திலிருந்து கோணம் α -ன் மதிப்பு: 0° ≤ α < 90°.
மாறாக திசையன் b × c , a திசையனுடன் உருவாக்கும் கோணம் β , 90°-ஐ விட அதிகமாகவும் இருக்கலாம்:
- (0° ≤ β ≤ 180°).
b × c , h -க்கு இணையாக அமைவதால்:
β = α அல்லது β = 180° − α.
- ஃ cos α = ±cos β = |cos β|,
- h = |a| |cos β|.
எனவே இணைகரத்திண்மத்தின் கனஅளவு:
- V = Ah = |a| |b × c| |cos β|,
திசையிலி முப்பெருக்கத்தின் வரையறைப்படி, மேலுள்ள கனஅளவு a · (b × c) -ன் தனிமதிப்பிற்குச் சமம்.
பண்புகள்
தொகு- பின்வரும் திசையிலி முப்பெருக்கங்கள் மூன்றுமே a ,b ,c திசையன்களின் திசையிலி முப்பெருக்கத்தைத் தரும் சமான வடிவங்களாகும்:
- குறுக்குப் பெருக்கல் காணும் இரு திசையன்களின் வரிசை மாற்றப்பட்டால் திசையிலி முப்பெருக்கத்தின் குறி எதிர்மமாக மாறிவிடும்:
- .
- திசையிலி முப்பெருக்கத்தை அதன் மூன்று திசையன்களை நிரையாகவோ அல்லது நிரலாகவோ கொண்ட (ஒரு அணி மற்றும் அதன் நிரல் மாற்று அணி இரண்டின் அணிக்கோவை மதிப்புகளும் சமம்.) 3 × 3 அணியின் அணிக்கோவை மதிப்பாகவும் கொள்ளலாம்:
- திசையிலி முப்பெருக்கத்தின் மதிப்பு பூச்சியம் எனில் திசையன்கள் a, b, மற்றும் c மூன்றும் ஒரேதள அமைவு திசையன்கள். ஏனெனில் இம்மூன்று திசையன்களைக் கொண்டு அமையும் இணைகரத்திண்மத்தின் கன அளவின் மதிப்பு பூச்சியம் என்றால் அத்திண்மம் தட்டையானதாக அமையும். எனவே இந்நிலையில் இம்மூன்று திசையன்களும் ஒரே தளத்தில் அமைகின்றன.
வெளி இணைப்புகள்
தொகுWeisstein, Eric W. "Scalar Triple Product." From MathWorld—A Wolfram Web Resource. http://mathworld.wolfram.com/ScalarTripleProduct.html