பெருக்கற்பலன்

கணிதத்தில் பெருக்கற்பலன் அல்லது பெருக்குத்தொகை (product) என்பது is the result of பெருக்கலின் விளைவு அல்லது பெருக்கப்பட வேண்டிய காரணிகளை அடையாளப்படுத்தும் கோவையாகும். எடுத்துக்காட்டாக

  • 6, 5 ஆகிய எண்களின் பெருக்கற்பலன் 30 (பெருக்கலின் விளைவு)
  • என்பது மற்றும் இரண்டின் பெருக்கற்பலன் (பெருக்கப்பட வேண்டிய இரு காரணிகளைக் குறிக்கிறது)

மெய்யெண்கள் மற்றும் சிக்கலெண்களில் பெருக்கப்படும் காரணிகளின் வரிசை பெருக்கற்பலனைப் பாதிப்பதில்லை. இப்பண்பு மெய் மற்றும் சிக்கல் எண்களில் பெருக்கல் செயலின் பரிமாற்றுத்தன்மையைக் காட்டுகிறது. அணிகளைப் பெருக்கும்போது பெருக்கப்படும் அணிகளின் வரிசையமைப்பு பெருக்கற்பலனின் மதிப்பில் வேறுபாட்டை ஏற்படுத்தும். அதாவது அணிகளின் பெருக்கல் செயலுக்குப் பரிமாற்றுத்தன்மை கிடையாது. இதேபோல வேறு சில இயற்கணிதங்களிலும் பெருக்கல் பரிமாற்றுத்தன்மையின்றி அமையும்.

எண்கள், அணிகள், பல்லுறுப்புக்கோவைகளில் மட்டுமின்றி வேறுபல இயற்கணித அமைப்புகளிலும் பெருக்கற்பலன் வரையறுக்கப்படுகிறது.

இரு எண்களின் பெருக்கற்பலன்

தொகு

இரு இயல் எண்களின் பெருக்கற்பலன்

தொகு
 
3 X 4 = 3 + 3 + 3 + 3 = 12

  நிரைகள் மற்றும்   நிரைகள் கொண்ட செவ்வக வடிவில் கற்களை அடுக்கக் கிடைப்பது:

 

இரு முழு எண்களின் பெருக்கற்பலன்

தொகு

முழு எண்களில் நேர்ம மற்றும் எதிர்ம எண்கள் உண்டு. இதனால் இரு முழு எண்களைப் பெருக்கும்போது அவ்வெண்களின் நேர்ம அளவுகளின் பெருக்கற்பலனோடு கீழ்வரும் அட்டவணைப்படி குறி இணைக்கப்படுகிறது:

 

இரு பின்னங்களின் பெருக்கற்பலன்

தொகு

இரு பின்னங்களின் பெருக்கற்பலன் அவ்விரு பின்னங்களின் தொகுதிகளின் பெருக்கற்பலனைத் தொகுதியாகவும் அவற்றின் பகுதிகளின் பெருக்கற்பலனைப் பகுதியாகவும் கொண்ட மற்றொரு பின்னமாகும்:

 

இரு சிக்கலெண்களின் பெருக்கற்பலன்

தொகு

பங்கீட்டு விதி மற்றும்   இரண்டையும் பயன்படுத்தி இரு சிக்கலெண்களின் பெருக்கற்பலனைக் காணலாம்:

 

சிக்கலெண் பெருக்கலின் வடிவவியல் பொருள்

தொகு
 
போலார் ஆயதொலைவுகளில் ஒரு சிக்கலெண்ணின் அமைவு.

பெருக்கற்பலன் காணவேண்டிய இரு சிக்கலெண்களையும் அதன் போலார் வடிவில் எடுத்துக் கொள்ளவேண்டும்

 
 

இரண்டையும் பெருக்க:

 

இரு சிக்கலெண்களைப் பெருக்கும்போது அவற்றின் ஆரைதிசையன்களின் பருமவளவுகள் பெருக்கப்படுகின்றன; மேலும் அவற்றின் கோணவீச்சுகள் கூட்டப்படுகின்றன என்பதே இரு சிக்கலெண்களின் பெருக்கற்பலனின் வடிவவியல் பொருளாகும்.

தொடர்வரிசையின் பெருக்கற்பலன்

தொகு

ஒரு தொடர்வரிசையின் கூட்டுகையானது எனக் குறிக்கப்படுவது போல அதன் பெருக்கற்பலனின் குறியீடு (Pi) ஆகும்.[1][2]

எடுத்துக்காட்டாக:

  =  .[3]

ஒரேயொரு எண் மட்டும் கொண்ட தொடர்வரிசையின் பெருக்கற்பலன் அதே எண்ணாகும். உறுப்புகளே இல்லாத தொடர்வரிசையின் பெருக்கற்பலன் "வெற்று பெருக்கற்பலன்" எனப்படும்; அதன் மதிப்பு 1 ஆகும்.

நேரியல் இயற்கணிதப் பெருக்கற்பலன்கள்

தொகு

நேரியல் இயற்கணிதத்திலுள்ள சில பெருக்கற்பலன்கள்:

குறிப்புகள்

தொகு

மேற்கோள்கள்

தொகு
  1. "Comprehensive List of Algebra Symbols". Math Vault (in அமெரிக்க ஆங்கிலம்). 2020-03-25. பார்க்கப்பட்ட நாள் 2020-08-16.
  2. Weisstein, Eric W. "Product". mathworld.wolfram.com (in ஆங்கிலம்). பார்க்கப்பட்ட நாள் 2020-08-16.
  3. "Summation and Product Notation". math.illinoisstate.edu. பார்க்கப்பட்ட நாள் 2020-08-16.
"https://ta.wikipedia.org/w/index.php?title=பெருக்கற்பலன்&oldid=3092275" இலிருந்து மீள்விக்கப்பட்டது