வரிசைமாற்ற அணி
கணிதத்தில் வரிசைமாற்ற அணி (permutation matrix) என்பது ஒவ்வொரு நிரை மற்றும் நிரலிலும் ஒரேயொரு உறுப்பு 1 ஆகவும் ஏனைய உறுப்புகள் எல்லாம் 0 ஆகவும் கொண்ட சதுர இரும அணியாகும் (binary matrix). இத்தகைய அணி (P) ஒவ்வொன்றும் m உறுப்புகளின் வரிசைமாற்றத்தைக் குறிக்கும். மேலும் மற்றொரு அணி A உடன் பெருக்கப்படும்போது முன்பெருக்கத்தில் (PA), A அணியின் நிரைகளின் வரிசைமாற்றமாகவும் பின்பெருக்கத்தில் (AP), A அணியின் நிரல்களின் வரிசைமாற்றமாகவும் அமையும்.
வரையறை
தொகுm உறுப்புகளின் வரிசைமாற்றம் π என எடுத்துக்கொண்டால்:
வரிசைமாற்றத்தை, ஒரு வரிசைமாற்ற அணியுடன் இருவழிகளில் இணைக்கலாம். எடுத்துக்காட்டாக m × m முற்றொருமை அணி, Im இன் நிரல்களை π இன் படி வரிசைமாற்றம் செய்யலாம் அல்லது நிரைகளை π இன் படி வரிசைமாற்றம் செய்யலாம்.
- Im இன் நிரல்களை வரிசைமாற்றம் செய்யக்கிடைக்கும் வரிசைமாற்ற அணி ஒரு m × m அணியாக இருக்கும். இந்த அணியின் குறியீடு Pπ = (pij) எனில்:
- ஒவ்வொரு i க்கும், j = π(i) எனில் pij = 1 ஆகவும், அவ்வாறு இல்லாவிட்டால் pij = 0 ஆகவும் இருக்கும்.
- அதாவது i ஆவது நிரையில் π(i) நிரலில் உள்ள உறுப்பு மட்டும் 1 ஆகவும் மீதமுள்ள உறுப்புகள் எல்லாம் 0 ஆகவும் இருக்கும்.
- எனவே வரிசைமாற்ற அணி Pπ கீழுள்ளவாறு அமைகிறது:
- இதில் செந்தர அடுக்களத் திசையனான என்பது m நீளமுள்ள ஒரு நிரை திசையனாகும். மேலும் அதன் j ஆவது இடத்தில் 1 உம் மற்ற இடங்களில் 0 உம் கொண்டிருக்கும்.[1]
எடுத்துக்காட்டு:
- என்ற வரிசைமாற்றத்துக்குரிய வரிசைமாற்ற அணி:
முற்றொருமை அணி I5 இன் j ஆவது நிரலானது Pπ அணியின் π(j) ஆவது நிரலாக அமைவதைக் காணலாம்.
பண்புகள்
தொகு(கட்டுரையின் இப்பிரிவு முழுவதும் வரிசைமாற்ற அணியின் நிரல் உருவகிப்புப் பயன்படுத்தப்படுகிறது. சில இடங்களில் நிரை உருவகிப்பு பயன்படுத்தப்படும்போது அது குறிப்பிடப்படும்)
- ஆல் நிரல் திசையன் g ஐப் முன்பெருக்கும்போது கிடைக்கும் அத்திசையனின் நிரைகளின் வரிசைமாற்றம்:
மேலுள்ள முடிவினை மீண்டும் மீண்டும் பயன்படுத்துவதன்மூலம் M ஒரு பொருத்தமான வரிசையுடைய அணியாக இருக்கும்போது, பெருக்கல் அணியான ஆனது M இன் நிரைகளின் வரிசைமாற்றமாக அமைவதைக் காணலாம்.
எனினும் ஒவ்வொரு k க்கும்,
- என்பதால் நிரைகளின் வரிமாற்றம் π−1 ஆகும். (M அணியின் இடமாற்று அணி )
- வரிசைமாற்ற அணிகளெல்லாம் செங்குத்து அணிகள் (i.e., ) என்பதால் அவற்றுக்கு நேர்மாறு அணிகள் உண்டு. அந்நேர்மாறு அணியைக் கீழ்க்காணுமாறு எழுதலாம்:
- ஒரு நிரை திசையன் h ஐ ஆல் பெருக்குவதால் அந்நிரை திசையனின் நிரல்களின் வரிசைமாற்றம்:
மேலுள்ள முடிவினை மீண்டும் மீண்டும் பயன்படுத்துவதன்மூலம் M அணியை வரிசைமாற்ற அணியான Pπ ஆல் பின்பெருக்கம் செய்தால் M Pπ ஆனது M இன் நிரல்களின் வரிசைமாற்றமாக அமைவதை காணலாம். மேலும்,
- m உறுப்புகளின் இரு வரிசைமாற்றங்கள் π, σ எனில் நிரல் திசையன் g மீது செயற்படும் அவற்றின் வரிசைமாற்ற அணிகள் Pπ, Pσ இரண்டின் தொகுப்பு:
- m உறுப்புகளின் இரு வரிசைமாற்றங்கள் π, σ எனில் நிரை திசையன் h மீது செயற்படும் அவற்றின் வரிசைமாற்ற அணிகள் Pπ, Pσ இரண்டின் தொகுப்பு:
- π வரிசைமாற்றத்துக்குரிய வரிசைமாற்ற அணியின் நிரை உருவகிப்பு எனில், என்பதால் இந்த உருவகிப்புக்கான பண்புகளை வரிசைமாற்ற அணியின் நிரல் உருவகிப்புக்குரிய பண்புகளிலிருந்து பெறலாம்.
- குறிப்பாக,
- இதிலிருந்து,
- இதேபோல,
அணிக் குலம்
தொகு(1) என்பது முற்றொருமை வரிசைமாற்றம் எனில் P(1) ஆனது முற்றொருமை அணியாகும்.
- {1,2,...,n} மீதான சமச்சீர் குலம் அல்லது வரிசைமாற்றுக் குலம் என்க. மொத்தம் n! வரிசைமாற்றங்கள் இருப்பதால், n! வரிசைமாற்ற அணிகள் இருக்கும். இந்த n × n வரிசைமாற்ற அணிகள், அணிப்பெருக்கலின் கீழ் முற்றொருமை அணியை முற்றொருமை உறுப்பாகக் கொண்ட குலமாக அமையும்.
மேற்கோள்கள்
தொகு- ↑ Brualdi (2006) p.2
- Brualdi, Richard A. (2006). Combinatorial matrix classes. Encyclopedia of Mathematics and Its Applications. Vol. 108. Cambridge: கேம்பிறிட்ஜ் பல்கலைக்கழகப் பதிப்பகம். பன்னாட்டுத் தரப்புத்தக எண் 0-521-86565-4. Zbl 1106.05001.
- Joseph, Najnudel; Ashkan, Nikeghbali (2010), The Distribution of Eigenvalues of Randomized Permutation Matrices (PDF)