இசுட்டெர்லிங் எண்கள்

(ஸ்டர்லிங் எண் இலிருந்து வழிமாற்றப்பட்டது)

கணிதத்தில் இசுடர்லிங் எண்கள் (Sterling numbers) இருவகைப்படும். ஒரு n-கணத்தை எத்தனை விதமாகச் சுழல்களாகப் பிரித்துக் காட்டலாம் என்ற பிரச்சினையை முதல் வகை ஸ்டர்லிங் எண்களாலும்,எத்தனை விதமாக உட்கணங்களாகப் பிரித்துக் காட்டலாம் என்ற பிரச்சினையை இரண்டாவது வகை ஸ்டர்லிங் எண்களாலும் ஆய்வு செய்யப்படுகிறது. ஜேம்ஸ் ஸ்டர்லிங் (1692 - 1770) என்ற ஸ்காட்லாந்து நாட்டுக் கணிதவியலர் 1730 இல் தன்னுடைய நூலில் இவைகளை அறிமுகப்படுத்தினார். ஆய்லர் எண்கள், ஈருறுப்புக் கெழுக்கள், பெல் எண்கள் -- இவைகளுடன் ஸ்டர்லிங் எண்கள் நெருங்கிய தொடர்பு கொண்டவை.[1][2][3]

முதல் வகை ஸ்டர்லிங் எண்கள்

தொகு

ஒரு n-கணத்தை k சுழல்களாகப் பிரிக்கக்கூடிய வழிகளின் எண்ணிக்கை முதல் வகை ஸ்டர்லிங் எண் எனப் பெயர் பெறும்.அதாவது எத்தனை n-திரிபுகள் k சுழல்களாலானவை என்ற கேள்விக்கும் இதே எண்ணிக்கைதான் விடை. இதற்கு ஒரு குறியீடு s(n,k). இக்கட்டுரையில்   என்ற குறியீட்டைப் பயன்படுத்துவோம்.இதை n-cycle-k என்றோ n-சுழல்-k என்றோ உச்சரிக்கலாம். 1930 இல் காராமாடா என்பவரால் இக்குறியீடு அறிமுகப்படுத்தப்பட்டு தற்காலத்தில் பரவலாக எங்கும் புழக்கத்திலுள்ளது.

எடுத்துக்காட்டாக,   = 11

ஏனென்றால், {a,b,c,d} போன்ற ஒரு 4-கணத்தின் இருசுழற்பிரிவுகள்:

a/bcd; a/bdc; b/cda; b/cad; c/dab; c/dba; d/abc; d/acb; ab/cd; ac/db; ad/bc

அண்மைக்காலத்தில் இவ்வெண் ஸ்டர்லிங் சுழல் எண் என்ற பெயராலும் குறிக்கப்பட்டு வருகிறது.

முதல்வகை எண்அட்டவணை

தொகு

 

  1 2 3 4 5 6 7
1 1
2 1 1
3 2 3 1
4 6 11 6 1
5 24 50 35 10 1
6 120 274 225 85 15 1
7 720 1764 1624 735 175 21 1

இரண்டாவது வகை ஸ்டர்லிங் எண்கள்

தொகு

ஒரு n-கணத்தை k உட்கணங்களாகப் பிரிக்கக்கூடிய வழிகளின் எண்ணிக்கை இரண்டாவது வகை ஸ்டர்லிங் எண் எனப் பெயர் பெறும். இதற்கு ஒரு குறியீடு S(n,k). இக்கட்டுரையில்   என்ற் குறியீட்டைப் பயன்படுத்துவோம். இதை n-subset-k என்றோ n-உட்கணம்-k என்றோ உச்சரிக்கலாம்.

எடுத்துக்காட்டாக,   = 7

ஏனென்றால், {a, b, c, d} போன்ற ஒரு 4-கணத்தின் இரு-உட்கணப்பிரிவுகள்:

{a}/{b,c,d}; {b}/{c,d,a}; {c}{d,a,b}; {d}{a,b,c}; {a,b}/{c,d}; {a,c}/{b,d}; {a,d}/{b,c}.

அண்மைக்காலத்தில் இவ்வெண் ஸ்டர்லிங் உட்கண எண் என்ற பெயராலும் குறிக்கப்பட்டு வருகிறது.

இரண்டாவது வகை எண் அட்டவணை

தொகு

 

  1 2 3 4 5 6 7
1 1
2 1 1
3 1 3 1
4 1 7 6 1
5 1 15 25 10 1
6 1 31 90 65 15 1
7 1 63 301 350 140 21 1

சில எளிதான பொதுவிளைவுகள்

தொகு
  •   ஆக இருந்தால்   =  .
  •   ஆக இருந்தால்   =  
  •   =   = 1
  •   =   =  

செங்குத்துத்தன்மை உறவுகள்

தொகு

முதல் வகை, இரண்டாவது வகை ஆகிய இரண்டு ஸ்டர்லிங் எண்களுக்கும், இறங்குமுகக் காரணியத்துடன் உறவுகள் உள்ளன. முதல்வகை ஸ்டர்லிங் எண்ணில் கொடுக்கப்பட்டுள்ள உறவிலிருந்து,

(*)  .

இரண்டாவதுவகை ஸ்டர்லிங் எண்ணில் கொடுக்கப்பட்டுள்ள உறவிலிருந்து,

(**)  

(*)ஐ (**) இல் பொருத்தினால் நமக்குக் கிடைப்பது:

 

=  

ஆனால்   பல்லுறுப்புகளெல்லாம் சேர்வியல் சார்பற்றவை.

ஃ (செ.உ.1):  . இங்கு  .

மாற்றாக, (**)ஐ (*) இல் பொருத்தி, பல்லுறுப்புகள் x(x-1)(x-2)...(x-n+1) சேர்வியல் சார்பற்றவை என்பதைப் பயன்படுத்தினால், நமக்குக்கிடைப்பது, இதற்கு இணையான் இன்னொரு செங்குத்துத்தன்மை உறவு (Orthogonality Relation):

ஃ (செ.உ.2): 

ஸ்டர்லிங் எண்களைப்பற்றிய மற்ற தேற்றங்களையும் மீள்வரு தொடர்புகளையும் முதல் வகை ஸ்டர்லிங் எண், இரண்டாவது வகை ஸ்டர்லிங் எண் என்ற தனிக்கட்டுரைகளில் பார்க்கவும்.

மேற்கோள்கள்

தொகு
  1. Ronald L. Graham, Donald E. Knuth, Oren Patashnik (1988) Concrete Mathematics, Addison-Wesley, Reading MA. பன்னாட்டுத் தரப்புத்தக எண் 0-201-14236-8, p. 244.
  2. Knuth, Donald E. (1992). "Two Notes on Notation". American Mathematical Monthly 99 (5): 403–422. doi:10.2307/2325085. https://www.jstor.org/stable/2325085. 
  3. Aigner, Martin (2007). "Section 1.2 - Subsets and binomial coefficients". A Course in Enumeration. Springer. pp. 561. பன்னாட்டுத் தரப்புத்தக எண் 978-3-540-39032-9.
"https://ta.wikipedia.org/w/index.php?title=இசுட்டெர்லிங்_எண்கள்&oldid=4132990" இலிருந்து மீள்விக்கப்பட்டது