சோஃவி ஜெர்மேன் பகாத்தனி
எண்கோட்பாட்டில் p என்பது ஒரு பகாத்தனி (பகா எண்) என்றால், அதன் இருமடங்கு கூட்டல் ஒன்று (2p + 1) என்னும் எண்ணும் பகாத்தனியாக இருந்தால் அந்த p என்னும் பகா எண் சோஃவி ஜெர்மேன் பகாத்தனி (Sophie Germain prime) என்று அழைக்கப்படும். எடுத்துக்காட்டாக 29 என்னும் எண் ஒரு சோஃவி ஜெர்மேன் பகாத்தனி; ஏன் என்றால், 29 என்னும் எண் ஒரு பகாத்தனியாக இருப்பது மட்டுமல்லாமல் 2 × 29 + 1 = 59 என்று கணக்கிடும் பொழுது 59 என்னும் எண்ணும் ஒரு பகா எண்ணாக இருக்கின்றது. ஆகவே 29 என்பது ஒரு சோஃவி ஜெர்மேன் பகாத்தனி. இவ்வகை பகாத்தனிகளுக்கு இப்பெயர் பிரான்சிய பெண்பால் கணிதவியலாளர் மாரி-சோஃவி ஜெர்மேன் (Marie-Sophie Germain) (1776–1831)என்பவரின் பெயரை ஒட்டி சூட்டப்பட்டது.
ஒரு பகா எண்னை 2p+1 என்று எழுத முடிந்தால், அந்த p என்பதும் பகா எண்ணாக இருந்தால், 2p+1 என்று எழுதத்தக்க எண்ணைப் பாதுகாப்பான பகாத்தனி (safe prime) என்பர். இதில் p என்பது சோஃவி ஜெர்மேன் பகாத்தனி என்பதால் பாதுகாப்பான பகாத்தனியும் சோஃவி ஜெர்மேன் பகாத்தனியும் நெருங்கிய தொடர்புடையவை. 2p+1 என்று எழுதத்தக்க எல்லா எண்களும் பகாத்தனிகள் அல்ல. எ.கா: 2 ×4 + 1 = 9 என்பது ஒரு பகு எண் (3 ×3 = 9)
ஒரு சோஃவி ஜெர்மேன் பகாத்தனி p > 3 என்பது 6k−1 என்னும் வடிவில் உள்ள எண், மாற்று வழியில் கூறுவதென்றால் p ≡ 5 (mod 6) - இது 2p+1 என்று எழுதப்பெறும் பாதுகாப்பான பகாத்தனியுடன் ஒத்துள்ளது. இன்னும் வேறு ஒரு வடிவில், பகாத்தனி p > 3 என்றால் 6k+1 என்பதும் p ≡ 1 (mod 6), 3|(2p+1) - இப்படியாக சோஃவி ஜெர்மேன் பகாத்தனி புலத்தில் சேராத p விலக்கிவிடுகின்றது. இதனை மாடுலோ கணிதத்துறை வழி நிறுவலாம்.
இந்த சோஃவி ஜெர்மேன் பகாத்தனிகள் எண்ணிக்கையில் முடிவிலியாக இருக்க வேண்டும் என்பது ஒரு நிறுவப்படாத ஊகம். முதல் சில சோஃவி ஜெர்மேன் பகாத்தனிகள் கீழே கொடுக்கப்பட்டுள்ளன:
.
அறிந்தவற்றுள் மிகப்பெரிய சோஃவி ஜெர்மேன் பகாத்தனி: 48047305725 × 2172403−1. இதில் 51910 பதின்ம (தசம) இலக்கங்கள் உள்ளன.. இதனை டேவிட் அண்டர்பக்கெ (David Underbakke) ஜனவரி 25, 2007 இல், டுவின்ஜென் (TwinGen ) மற்றும் எல் எல் ஆர் (LLR) என்னும் நிரலிகளைக் கொண்டு நிறுவினார் [1] இதற்கு முன் இருந்த பெரிய எண் பதிவு 137211941292195 × 2171960−1; இது 51780 பதின்ம இலக்கங்களைக் கொண்டிருந்தது. இதனை யராய் என்பவரும் மற்றவர்களும் மே 3, 2006இல் கண்டுபிடித்தனர் [2].
தோராயக் கணக்கீடு
தொகுn என்னும் எண்ணைவிட சிறியனவாக உள்ள எண்களில் எத்தனை எண்கள் சோஃவி ஜெர்மேன் பகாத்தனிகளாக இருக்கும் என்று ஒரு தோராயக் கணக்கீட்டை ஜி. எச். ஹார்டி மற்றும் ஜே. இ. லிட்டில்வுட் (G. H. Hardy and J. E. Littlewood) ஆகியோர் அளித்தனர். அவ் மதிப்ப்பீடு, 2C2 n / (ln n)2 என்பதாகும் இதில் C2 என்பது இரட்டைப் பகாத்தனி நிலைஎண், சற்றேறக்குறைய 0.660161. n = 104 என்றால், இந்த தோராய மதிப்பீடு 156 சோஃவி ஜெர்மேன் பகாத்தனிகள் இருப்பதாகக் கூறுகின்றது, ஆனால் உண்மையில் மொத்தம் 190 சோஃவி ஜெர்மேன் பகாத்தனிகள் உள்ளன. எனவே இதன் பிழையளவு 20%. n = 107 என்று எடுத்துக்கொண்டால். இந்த தோராய மதிப்பீடு 50822 சோஃவி ஜெர்மேன் பகாத்தனிகள் இருக்க வேண்டும் என்று கூறுகின்றது, ஆனால் உண்மையில் 56032 எண்கள் உள்ளன. எனவே பிழை 10%.
1 முதல் 10,000 வரையிலும் உள்ள இயல் எண்களில் உள்ள 190 சோஃவி ஜெர்மேன் பகாத்தனிகள்
தொகு2 | 3 | 5 | 11 | 23 | 29 | 41 | 53 | 83 | 89 | 113 | 131 |
173 | 179 | 191 | 233 | 239 | 251 | 281 | 293 | 359 | 419 | 431 | 443 |
491 | 509 | 593 | 641 | 653 | 659 | 683 | 719 | 743 | 761 | 809 | 911 |
953 | 1013 | 1019 | 1031 | 1049 | 1103 | 1223 | 1229 | 1289 | 1409 | 1439 | 1451 |
1481 | 1499 | 1511 | 1559 | 1583 | 1601 | 1733 | 1811 | 1889 | 1901 | 1931 | 1973 |
2003 | 2039 | 2063 | 2069 | 2129 | 2141 | 2273 | 2339 | 2351 | 2393 | 2399 | 2459 |
2543 | 2549 | 2693 | 2699 | 2741 | 2753 | 2819 | 2903 | 2939 | 2963 | 2969 | 3023 |
3299 | 3329 | 3359 | 3389 | 3413 | 3449 | 3491 | 3539 | 3593 | 3623 | 3761 | 3779 |
3803 | 3821 | 3851 | 3863 | 3911 | 4019 | 4073 | 4211 | 4271 | 4349 | 4373 | 4391 |
4409 | 4481 | 4733 | 4793 | 4871 | 4919 | 4943 | 5003 | 5039 | 5051 | 5081 | 5171 |
5231 | 5279 | 5303 | 5333 | 5399 | 5441 | 5501 | 5639 | 5711 | 5741 | 5849 | 5903 |
6053 | 6101 | 6113 | 6131 | 6173 | 6263 | 6269 | 6323 | 6329 | 6449 | 6491 | 6521 |
6551 | 6563 | 6581 | 6761 | 6899 | 6983 | 7043 | 7079 | 7103 | 7121 | 7151 | 7193 |
7211 | 7349 | 7433 | 7541 | 7643 | 7649 | 7691 | 7823 | 7841 | 7883 | 7901 | 8069 |
8093 | 8111 | 8243 | 8273 | 8513 | 8663 | 8693 | 8741 | 8951 | 8969 | 9029 | 9059 |
9221 | 9293 | 9371 | 9419 | 9473 | 9479 | 9539 | 9629 | 9689 | 9791 |
பயன்பாடுகள்
தொகுசோஃவி ஹெர்மேன் பகாத்தனிகள், ஒன்றுக்கொன்று தொடர்பில்லாமல் வரும் எண் வரிசைத்தொடர்கள் வகைகளில் சிலவற்றை உருவாக்கப் பயன்படுகின்றது. போலி அல்லது அரைகுரை சீருறா எண்தொடர் ஆக்கிகளில் இது பயன்படுகின்றது. q என்னும் ஓர் பாதுகாப்பான பகாத்தனி, p என்னும் ஒரு சோஃவி ஜெர்மேன் பகாத்தனியால் உருவாகி இருந்து, p என்பது 3, 9, அல்லது 11 (mod 20) ஆகியவற்றுடன் முற்றீடு மீதகமாக இருந்தால், 1/q என்னும் பதின்ம வகுத்தல் q−1 இலக்கங்களை அரைகுறையான சீருறா வரிசையில் தரும். இதற்கு ஏற்ற பகாத்தனிகள் (q): 7, 23, 47, 59, 167, 179, .. முதலியன ஆகும். (தொடர்புடைய p = 3, 11, 23, 29, 83, 89, etc.). இதன் விளைவு q−1 இலக்கங்கள் நீளமுடைய (முன் நிற்கும் சுழிகள் உட்பட) வரிசையாகும். எடுத்துக்காட்டாக q = 23 என்பது கீழ்க்காணும் அரைகுறையான சீருறா எண் வரிசையைத் தருகின்றது: 0, 4, 3, 4, 7, 8, 2, 6, 0, 8, 6, 9, 5, 6, 5, 2, 1, 7, 3, 9, 1, 3. இந்த எண்கள் மறைமுகமாகவோ, கமுக்கமாகவோ, செய்திகளை அனுப்பத் தேவையான அளவு போதிய மறைவரைவுத் தன்மை அல்லது ஒளிவுத்தமை (cryptographic properties) கொண்டதல்ல.
மேற்கோள்கள்
தொகு- Maximally Periodic Reciprocals, R.A.J. Matthews (1992). Bulletin of the Institute of Mathematics and its Applications; vol 28 pp 147-148.
வெளி இணைப்புகள்
தொகு- The Top Twenty Sophie Germain Primes — from the Prime Pages.