முழுக்கோட்டுரு

முழுக்கோட்டுரு (complete graph) என்பது ஒரு எளிய திசையிலாக் கோட்டுருவாகும். முழுக்கோட்டுருவின் ஒவ்வொரு வெவ்வேறான கணுக்களின் இருமமும் தனித்ததொரு விளிம்பால் இணைக்கப்பட்டிருக்கும். "திசை முழுக்கோட்டுரு" என்பது ஒவ்வொரு வெவ்வேறான கணுக்களின் இருமமும் விளிம்புகளின் தனித்ததொரு இருமத்தால் இணைக்கப்பட்ட ஒரு திசைக்கோட்டுரு ஆகும்.

முழுக்கோட்டுரு
Complete graph K7.svg
K7, 7 கணுக்களுடைய முழுக்கோட்டுரு
முனைகள்n
விளிம்பு
ஆரை
விட்டம்
சுற்றளவு
தன்னுருவாக்கங்கள்n! (Sn)
நிற எண்n
நிறச் சுட்டெண்n - n ஒற்றையெண்
n − 1 - n இரட்டையெண்
Spectrum
இயல்புகள்(n − 1)-ஒழுங்கு கோட்டுரு
சமச்சீர் கோட்டுரு
கணு-கடப்பு கோட்டுரு
விளிம்பு-கடப்பு கோட்டுரு
வலிமையாக ஒழுங்கு கோட்டுரு
தொகையீட்டுக் கோட்டுரு
NotationKn

1736 ஆம் ஆண்டிலிருந்துதான் (ஆய்ரின் கோனிக்சுபெர்கின் ஏழு பாலங்கள்) கோட்டுருவியலில் ஆய்வு துவங்கியதென்றாலும் ஒழுங்குப் பல்கோணங்களின் முனைகளைக் கணுக்களாகக் கொண்டு வரையப்பட்ட வரைபடங்கள் 13 ஆம் நூற்றாண்டு காலத்திய ஆய்வு நூல்களில் உள்ளன.[1] சில சமயங்களில் இந்த வரைபடங்கள் "மறைபொருள் ரோஜா" (mystic rose) எனக் குறிக்கப்படுகின்றன.[2]

பண்புகள்தொகு

n கணுக்களுடைய முழுக்கோட்டுரு Kn எனக் குறிக்கப்படுகிறது. இக்குறியீட்டிலுள்ள "K" என்பது komplett என்ற செருமானிய மொழிச்சொல்லிருந்து வந்தது எனச் சில ஆதாரங்கள் கூறுகின்றன.[3] ஆனால் முழுக்கோட்டுரு என்பதற்கான செருமானிய மொழிச்சொல் vollständiger Graph என்பதில் "K" என்ற எழுத்தே இல்லை. மேலும் பிற ஆதாரங்கள், "காசிமிசெசு குராபுசுகி" (Kazimierz Kuratowski, போலிய உச்சரிப்பு: [kaˈʑimjɛʂ kuraˈtɔfskʲi]) என்ற போலந்து கணிதவியலாளரின் கோட்டுருவியல் பங்களிப்புகளுக்காக இந்த எழுத்து பயன்படுத்தப்படுகிறது என்றும் கூறுகின்றன.[4]

முழுக்கோட்டுரு Kn இன் விளிம்புகளின் எண்ணிக்கை n(n − 1)/2 (ஒரு முக்கோண எண்). மேலும் இது n − 1 படி கொண்ட ஒரு ஒழுங்கு கோட்டுரு. அனைத்து முழுக்கோட்டுருக்களும் தமது பெருமக் குறுகும்புகளாக இருக்கும். முழுக்கோட்டுருக்கள் பெரும இணைப்புள்ளவை. ஒரு முழுக்கோட்டுருவின் நிரப்பு கோட்டுரு ஒரு வெற்று கோட்டுருவாக இருக்கும்.

எடுத்துக்காட்டுகள்தொகு

n - முழுக்கோட்டுருவின் கணுக்களின் எண்ணிக்கையைக் குறிக்கிறது.
n = 1 - 12 வரையிலான முழுக்கோட்டுருக்கள் அவற்றின் விளிம்புகளின் எண்ணிக்கையுடன் தரப்பட்டுள்ளன:
K1: 0 K2: 1 K3: 3 K4: 6
       
K5: 10 K6: 15 K7: 21 K8: 28
       
K9: 36 K10: 45 K11: 55 K12: 66
       

மேற்கோள்கள்தொகு

  1. Knuth, Donald E. (2013), "Two thousand years of combinatorics", in Wilson, Robin; Watkins, John J. (eds.), Combinatorics: Ancient and Modern, Oxford University Press, pp. 7–37, ISBN 978-0191630620.
  2. Mystic Rose, nrich.maths.org, 23 January 2012 அன்று பார்க்கப்பட்டது.
  3. Gries, David; Schneider, Fred B. (1993), A Logical Approach to Discrete Math, Springer-Verlag, p. 436, ISBN 0387941150.
  4. Pirnot, Thomas L. (2000), Mathematics All Around, Addison Wesley, p. 154, ISBN 9780201308150.

வெளியிணைப்புகள்தொகு

"https://ta.wikipedia.org/w/index.php?title=முழுக்கோட்டுரு&oldid=2998541" இருந்து மீள்விக்கப்பட்டது