ஒளி
ஒளி (light) என்பது கண்களுக்குப் புலப்படும் அலைநீளம் கொண்ட மின்காந்த அலைகள் என்று வரையறுக்கப்படுகின்றன. பொதுவாக அகச்சிவப்புக் கதிர்களுக்கும் புற ஊதா கதிர்களுக்கும் இடைப்பட்ட அலை நீளம் கொண்ட மின்காந்தக் கதிர் வீச்சுகள் ஒளி என்று அழைக்கப்படுகிறது. அலை-துகள் இருமை தன்மையின் காரணமாக ஒளி ஒரே நேரத்தில் அலை மற்றும் துகள் இரண்டினது பண்புகளையும் வெளிப்படுத்துகிறது. இவை 380 நானோமீட்டர்கள் முதல் 740 நானோமீட்டர்கள் வரையிலான அலைநீளத்தையுடைய மின்காந்த அலைகளாகும். ஒளி நெர் கொட்டு பண்பை கண்டறிந்தவர் sir ஹசம் ஹயதம் 6th standard la irukku
ஒளியின் வேகம்
தொகுவெற்றிடத்தில் ஒளியின் வேகம் சரியாக 2,99,792.458 மீ/செ (வினாடிக்கு சுமார் 1,86,282 மைல்கள்) ஆகும். எல்லா வகை மின்காந்தக் கதிர்வீச்சுக்களும் வெற்றிடத்தில் இந்த வேகத்திலேயே நகர்கின்றன. இக்கணியம் சில நேரங்களில் "ஒளியின் வேகம்" எனக் குறிப்பிடப்பட்டாலும், வேகம் என்பது திசையினை உடைய காவிக் கணியம் ஆகும். ஒளியின் வேகம் கண்டறிய நடந்த முயற்சிகளின் காலக்கோடு[1]
மின்காந்த நிறமாலை மற்றும் கட்புல ஒளி
தொகுபொதுவாக மின்காந்த கதிர்வீச்சு அதன் அலைநீளத்திற்கேற்ப வானொலி, நுண்ணலை, அகச்சிவப்பு, புற ஊதா, கண்ணினால் உணரக்ககூடிய ஒளி, எக்சு-கதிர் மற்றும் காம்மா கதிர் என வகைப்படுத்தப்படுகிறது.
மின்காந்த கதிர்வீச்சின் நடத்தை அதன் அலை நீளத்தைச் சார்ந்து அமையும். உயர்அதிர்வெண்களில் குறுகிய அலைநீளத்தையும், தாழ் அதிர்வெண்ணில் நீண்ட அலை நீளத்தையும் கொண்டிருக்கின்றன. மின்காந்த கதிர்வீச்சு தனிஅணுக்கள் மற்றும் மூலக்கூறுகளுடன் இடைவினையின் போது, அதன் நடத்தை ஒவ்வொரு குவாண்டமும் காவுகின்ற ஆற்றலின் அளவை பொறுத்தது.
ஒளியியல்
தொகுஒளிச் சிதறல்
தொகுஒளி ஓர் ஒளிபுகும் ஊடகத்தின் ஊடே செல்லும் போது, சிதறடிக்கப்பட்டு அதன் அலைநீளத்தில் மாறுதல் ஏற்படுகிறது. இதுவே ராமன் சிதறல் (Raman scattering) அல்லது இராமன் விளைவு (Raman effect) என அழைக்கப்படுகிறது. இவ்வாறு சிதறும் ஒளி மூன்று கூறுகளைக் கொண்டுள்ளது.[2] அவை
- படுகதிருக்குச் சமமான அலைநீளமுள்ள முதன்மை அல்லது ராலே வரி;
- முதன்மை வரியைவிட அதிக அலைநீளமுள்ள ஸ்டோக்சு வரிகள்;
- முதன்மை வரியைவிட குறைவான அலைநீளமுள்ள எதிர் ஸ்டோக்சு வரிகள்;
ஒளி விலகல்
தொகுஓர் ஒளிக்கதிர், ஓர் ஊடகத்திலிருந்து மற்றொரு ஊடகத்திற்கு செல்லும்போது அதன் பாதையில் விலகல் அடையும் நிகழ்வு ஒளிவிலகல் எனப்படும்.
ஒளிக்கதிர் அடர்வு குறைந்த ஊடகத்திலிருந்து, அடர்வுமிக்க ஊடகத்திற்குச் செல்லும்போது, எடுத்துக்காட்டாக காற்றிலிருந்து கண்ணாடிக்குச் செல்லும்போது, அக்கதிர் செங்குத்துக் கோட்டை நோக்கி விலகல் அடையும்.
ஒளிக்கதிர் அடர்வுமிக்க ஊடகத்திலிருந்து, அடர்வு குறைந்த ஊடகத்திற்குச் செல்லும்போது, எடுத்துக்காட்டாக கண்ணாடியிலிருந்து காற்றுக்குச் செல்லும்போது, அக்கதிர் செங்குத்துக் கோட்டை விட்டு விலகிச் செல்லும்.
ஊடகங்களில் ஒளியின் வேகமானது, வெற்றிடத்தில் ஓளியின் வேகத்தைவிடக் குறைவானதாகும். வெற்றிடத்தில் ஓளியின் வேகம் c யினாலும், ஊடகத்தில் ஓளியின் வேகம் v யினாலும் தரப்படின், அவ்வூடகத்தின் ஒளிவிலகல் குறிப்பெண்(அ முறிவுச்சுட்டி) n ஆனது,
இனால் தரப்படும். இதிலிருந்து, வெற்றிடத்தின் முறிவுச்சுட்டி n = 1 எனவும், அடர்ந்த ஊடகங்களின் முறிவுச்சுட்டி n > 1 எனவும் தெரிந்து கொள்ளலாம்.
ஒளியானது வெற்றிடத்தில் அல்லது வேறொரு ஊடகத்தில் இருந்து இன்னொரு ஊடகத்தினுள் செல்கின்ற போது, அது தனது அதிர்வெண்ணை மாற்றாது அலைநீளத்தை மட்டுமே மாற்றுகிறது. ஓளியானது ஊடகத்தின் விளிம்பிற்கு செங்குத்து அல்லாத வேறு எத்திசையில் படும்போதும், அது தான் செல்லும் திசையினை மாற்றுகிறது. இத் தோற்றப்பாடு ஒளி முறிவு எனப்படும்.
ஒளி பிரதிபலிப்பு
தொகுஎதிரொளிப்பு அல்லது ஒளித்தெறிப்பு (Reflection) என்பது ஒளிக்கதிரானது சென்று ஒரு பொருளில் பட்டு எதிர்வது ஆகும்.
ஒளி மூலங்கள்
தொகுபல்வேறு வகையான ஒளி மூலங்கள் உள்ளன. அவற்றுள் முக்கியமானவை வெப்பத்தால் ஒளி உமிழும் பொருட்களாகும். அவை கரும்பொருள் கதிர்வீச்சை ஒத்த வகையிலான நிறப்பட்டையில் ஒளியை உமிழ்கின்றன. மிகவும் அறியப்பட்ட வெப்பத்தால் ஒளி உமிழும் மூலம் கதிரவன் ஆகும்; அவற்றின் வெளியடுக்கு சுமார் 6000 கெல்வின் வெப்பநிலையில் இருக்கும். சூரியனிலிருந்து பூமிக்கு வரும் கதிர்வீச்சில் 44% மட்டுமே கட்புலனாகும் ஒளியாகும். மற்றொரு முக்கியமான ஒளி மூலம் மின்விளக்குகள் ஆகும். அவற்றிலிருந்து வெளிப்படும் மின்காந்த கதிர்வீச்சில் 10% மட்டுமே கட்புலனாகும் ஒளியாகும், மீதியனைத்தும் புறஊதாக் கதிர்களாக வெளியிடப்படுகிறது. மேலும் வரலாற்றின் தொடக்க காலத்திலிருந்து அறியப்பட்டு வரும் ஒளிமூலம் எரியும் பொருட்களாகும்; இவையும் ஒரு சிறு பகுதியை மட்டுமே கட்புலன் ஒளியாக வெளியிடுகின்றன, மற்றவற்றை புறஊதாக்கதிர்களாகவே வெளியிடுகின்றன.
அலகுகள் மற்றும் அளவீடுகள்
தொகுஒளியானது இரண்டு வெவ்வேறு முறையான அலகுகளில் அளவிடப்படுகிறது. அவையாவன:
- கதிர்வீச்சளவை அலகுகள் - இது அனைத்து அலைநீளங்களிலும் ஒளியின் திறன் அளவை அடிப்படையாகக் கொண்டது.
- ஒளியளவை அலகுகள் - இது ஒளியை அதன் அலைநீளத்தைப் பொறுத்து திட்ட மனிதப் பார்வை உணர்தலை அடிப்படையாகக் கொண்டது.
ஒளியளவை முறையானது, எடுத்துக்காட்டாக, ஒளியமைப்புகள் அமைப்பது போன்ற மனிதப் பயன்பாடுகளுக்கு உதவுகிறது. அனைத்துலக அலகுகள் முறையில் இருவித அலகுகளும் கீழ்வரும் கட்டுரையில் காட்டப்பட்டுள்ளன:
ஒளி பற்றிய கோட்பாடுகள்
தொகுதுகள் கோட்பாடு
தொகுபியரி கசென்டி (1592-1655) எனும் அணு அறிவியலாளர் ஒளியின் துகள் கோட்பாட்டை அறிமுகப்படுத்தினார். அவரது கட்டுரை அவரது இறப்புக்குப் பின்னர் 1960-களில் பிரசுரிக்கப்பட்டது. தனது முற்காலத்திலேயே கசென்டியின் கட்டுரைகளைப் படித்திருந்த ஐசக் நியூட்டன், 1965-ல் அவர் எழுதிய ஒளியின் கற்பிதம் (Hypothesis of Light) எனும் நூலில் ஒளி மூலத்திலிருந்து அனைத்து திசைகளிலும் ஒளித்துகள்கள் வெளியிடப்படுகின்றன என்று கூறினார். ஓளியின் அலைக் கோட்பாட்டை இவர் ஏற்க மறுத்தார். தடைகள் எதிர்வரும்போது அலைகள் வளைந்து செல்லும். ஆனால், ஒளி நேர்க்கோட்டில் மட்டுமே பயணிக்கிறது என்ற கருத்தை இவர் கொண்டிருந்தார். ஃபிரான்செஸ்கோ கிரிமால்டியால் கண்டுணரப்பட்ட ஒளயின் விளிம்பு வளைவு நிகழ்வை, ஒளி ஈதர் எனும் கோட்பாட்டு ஊடகத்தில் பயணிக்கும்போது அலைகளை உருவாக்கும் என்று கூறி நிறுவினார்.
நியூட்டனின் கோட்பாட்டின்படி ஒளி எதிரொளிப்பை திறம்பட விவரிக்க முடியும். ஆனால், ஒளிவிலகலை சரியாக அவதானிக்கவில்லை. ஒளியானது அடர்த்தி மிகுந்த ஊடகத்துக்குள் செல்லும்போது அதன் திசைவேகம் அதிகரிக்கிறது, ஏனெனில் அதில் புவியீர்ப்பு அதிகமாக இருக்கும் என்பதாக அதன் கருதுகோள் அமைகிறது. 1704-இல் வெளியிடப்பட்ட ஆப்டிக்சு (Opticks) எனும் புத்தகத்தில் முழுமையான- ஒளியின் துகள் கோட்பாட்டை பதிப்பித்தார். அறிவியலாளராக நியூட்டன் பெற்றிருந்த புகழின் காரணமாக 18-ஆம் நூற்றாண்டின் முழுமைக்கும் அவரது கோட்பாடு நிலைபெற்றிருந்தது. துகள் கோட்பாட்டை அடிப்படையாக வைத்து லாப்லாசு (Laplace), ஒளி வெளியேறமுடியாத அளவுக்கு ஒரு பொருள் நிறையில் மிகுந்திருக்கக்கூடும். அதாவது அத்தகைய அதீத அளவிலான ஈர்ப்புவிசையைக் கொண்டிருந்தால் ஒளி வெளியேறாத கருந்துளை (Black Hole) இருக்கக்கூடும் என்ற கருதுகோளை முன்வைத்தார். ஆயினும், ஒளியின் அலைக்கோட்பாடு சந்தேகத்திற்கிடமின்றி நிரூபிக்கப்பட்ட பின்னர் தன் கருதுகோள் தவறென ஒப்புக்கொண்டார். (உண்மையில் பின்னர் நிரூபிக்கப்பட்டபடி ஒளியின் துகள் கோட்பாடோ அலைக் கோட்பாடோ முழுதும் சரியானதில்லை, இரு கோட்பாடுகளும் பல வகையான ஒளியின் பண்புகளை விவரித்தாலும் அனைத்து பண்புகளையும் விவரிக்க இயலவில்லை.) ஸ்டீபன் ஹாக்கிங் மற்றும் ஜார்ஜ் எல்லிசு எழுதிய கால-வெளியின் பெரிய அளவிலான கட்டமைப்பு (Large Scale structure of Space-time) நியூட்டனின் ஒளித் துகள் கோட்பாட்டுக் கட்டுரையின் ஆங்கில மொழியாக்கம் உள்ளது.
அலைக் கோட்பாடு
தொகு1660-இல் இராபர்ட் ஹூக் என்பவர் ஒளிபற்றிய அலைக் கோட்பாட்டைப் பதிப்பித்தார். 1678-ஆம் ஆண்டில் கிறிஸ்டியன் ஹைஜென்சு தன்னுடைய ஒளியின் அலைக் கோட்பாட்டை உருவாக்கினார். அதனை தன்னுடைய ஒளியின் ஆய்வுக்கட்டுரை (Treatise on Light) எனும் புத்தகத்தில் வெளியிட்டார். அதில் ஒளியானது அலைகளாக அனைத்து திசைகளிலும் உமிழப்படுகிறது எனவும், அது ஒளிக்கடத்துமீதர் (Luminiferous ether) ஊடகம் வழியாகப் பயணிப்பதாகவும் நிலைநாட்டினார். ஒளியானது புவியீர்ப்பு விசையால் பாதிக்கப்படுவதில்லையெனவும் அது அடர்த்தி மிகுந்த ஊடகம் வழியே பயணிக்கும்போது அதன் வேகம் குறைகிறதெனவும் அதில் குறிப்பிட்டிருந்தார்.
அலைக் கோட்பாட்டின்படி, ஒளியலைகள் ஒலியலைகளைப்போன்று ஒன்றையொன்று குறுக்கீடு செய்யும் (இவ்விளைவு தாமசு யங் என்பாரால் 1800-வாக்கில் நிறுவப்பட்டது.); மேலும், குறுக்கலைகளாக இருப்பின் அவற்றை முனையமைவுறச் செய்ய இயலும். விளிம்பு விளைவுச் சோதனை மூலமாக தாமசு யங், ஒளியானது அலைகளாகச் செயல்படுகின்றன என நிறுவினார். மேலும், வெவ்வேறு அலைநீளங்கள் வெவ்வேறு வண்ணங்களை உருவாக்குவதாகவும், கண்ணிலுள்ள மூன்றுவண்ண ஏற்பிகளால் வண்ணப்பார்வை ஏற்படுகின்றது எனவும் விவரித்தார்.
லியோனார்டு ஆய்லர் ஒளியின் அலைக்கோட்பாட்டின் ஆதரவாளர் ஆவார். 1746-இல் வெளியிட்ட அவரது Nova theoria lucis et colorum எனும் புத்தகத்தில் ஒளியின் விளிம்பு விளைவானது அலைக்கோட்பாட்டின்படி தெளிவாக விவரிக்க முடியும் என வாதிட்டார்.
பின்னர், அகஸ்டின் ழான் ஃபிரெசுனெல் என்பார் தன்முயற்சியில் புதிய அலைக் கோட்பாட்டை உருவாக்கினார், அதை 1817-ஆம் ஆண்டு பிரெஞ்சு அறிவியல் கழகத்தில் சமர்ப்பித்தார். சிமியன் டெனிசு பாய்சான் என்பார் ஃபிரெசுனெல் கோட்பாட்டின் கணிதவியல் மாதிரியை மேம்படுத்தி அலைக்கோட்பாட்டை அனைவரும் ஏற்கும்படி செய்தார், அதன்மூலம் நியூட்டனின் நுண்ணிமக் கோட்பாட்டை தவறென நிறுவினார். 1821-இல் ஒளியின் முனையமைவுறுதலை தனது அலைக்கோட்பாட்டு கணிதவியல் மாதிரிகள் மூலம் விவரித்தார், மேலும் முனையமைவுறுவதற்கு ஒளி முழுவதற்கும் குறுக்கலைகளாக இருக்கவேண்டும் எனவும் நெடுக்குவாட்டிலான அதிர்வுகள் ஏதும் இருக்கக்கூடாது எனவும் விவரித்தார்.
ஒளியின் அலைக் கோட்பாட்டில் உள்ள குறைபாடு என்னவெனில் ஒளியலைகள், ஒலியலைகளைப் போன்று, பயணிக்க ஊடகம் தேவை. ஒளிக்கடத்துமீதர் எனும் கருதுகோள் பொருள் மூலமாக அது பயணிப்பதாக முன்னர் விவரிக்கப்பட்டது, ஆனால் மைக்கல்சன்-மார்லி சோதனைக்குப் பின்னர் பத்தொன்பதாம் நூற்றாண்டின் கடைசிக்கட்டத்தில் அத்தகைய பொருளின் இருப்பு மிகவும் கேள்விக்கிடமானது.
நியூட்டனின் நுண்ணிமக் கொள்கையின்படி ஒளியானது அடர்வுமிகுந்த ஊடகத்தில் செல்லும்போது அதன் திசைவேகம் அதிகரிக்கவேண்டும், ஆனால் அலைக் கோட்பாடு அதற்கு நேர்மாறான முடிவைத் தந்தது. அக்காலகட்டத்தில் ஒளியின் திசைவேகத்தை மிகச்சரியாக அளவிடப்படமுடியாததால் இரண்டு கொள்கைகளில் எது சரியானது எனத் தெளிவான முடிவுக்கு வர இயலவில்லை. 1850-இல் லியான் ஃபோகால்டு என்பார் ஓரளவுக்கு சரியாக ஒளியின் திசைவேகத்தை அளந்தார்.[3] அவரது சோதனை முடிவுகள் அலைக் கோட்பாட்டுக்கு சாதகமாக அமைந்தன, இதன்மூலம் பழைய துகள் கோட்பாடு ஓரங்கட்டப்பட்டது; எனினும், வேறுவடிவில் துகள் கோட்பாடு 20-ஆம் நூற்றாண்டில் நிலைபெற்றது.
குவாண்டம் கோட்பாடு (பகவக் கோட்பாடு)
தொகு1900-ஆம் ஆண்டில் மாக்சு பிளாங்க் என்பார் கரும்பொருள் கதிர்வீச்சை விவரிக்கையில் ஒளியானது அலையாக இருப்பினும், அவற்றின் அதிர்வெண்களைப் பொறுத்து ஒரு குறிப்பிட்ட அளவிலான ஆற்றலையே இழக்கவோ பெறவோ இயலும் என்பதைக் கண்டறிந்தார். இந்த ஒளியாற்றல் கட்டிகளை குவாண்டா(quanta) - பகவம் - என்று குறித்தார். 1905-இல் ஆல்பர்ட் ஐன்ஸ்டீன், ஒளிமின் விளைவை விவரிக்கையில் ஒளிப்பகவக் கொள்கையைப் பயன்படுத்தினார். 1923-ஆம் ஆண்டு ஆர்தர் காம்ப்டன் என்பார், செறிவுகுறைந்த எக்சு-கதிர்கள் எலக்ட்ரான்களால் சிதறடிக்கப்படும்போது (காம்ப்டன் சிதறல்) ஏற்படும் அலைநீள மாற்றம் துகள் கோட்பாட்டின் மூலமே விவரிக்கப்பட முடியும், அலைக் கோட்பாட்டால் அவ்வாறு விவரிக்க இயலாது எனக் கண்டறிந்தார். 1926-இல் கில்பர்ட் என். லூவிசு என்பார் இத்தகைய ஒளிக் கட்டித் துகள்களுக்கு ஒளியணுக்கள் (ஃபோட்டான்கள்) எனப் பெயரிட்டார்.
நவீன குவாண்டம் எந்திரவியலானது ஒளியை அலையாகவும் துகளாகவும் தக்கவாறு எடுத்துக்கொள்கிறது; அதாவது சில இடங்களில் அலையாகவும் சில இடங்களில் துகளாகவும் சில இடங்களில் அலையுமற்ற துகளுமற்ற ஒரு நிகழ்வாகவும் இது கருத்திலெடுத்துக் கொள்கிறது. காம்ப்டன் சிதறலில் இருக்கும் எக்சு-கதிர்கள் மற்றும் ரேடியோ அலைகள் போன்றவற்றில், அதாவது குறைந்த அதிர்வெண்களில், ஒளியானது அலை போலவே செயல்படுகிறது, அதிக அதிர்வெண்களில் ஒளியானது துகள் போல செயல்படுகிறது; ஆயினும், இருவித பண்புகளில் ஒன்றை முழுவதுமாக எப்போதுமே இழப்பதில்லை. காண்புறு ஒளியானது நடுநிலையான அதிர்வெண்களைக் கொண்டது, சோதனைகள் மூலமாக காண்புறு ஒளியானது சில இடங்களில் அலையாகவும் சில இடங்களில் துகளாகவும் சில இடங்களில் இரண்டாகவுமே செயல்படுவதை நிரூபிக்கலாம்.
மின்காந்த கோட்பாடு
தொகு1845-இல் மைக்கேல் ஃபாரடே என்பார், நேரியல் முனையமைவுறுபெற்ற ஒளியின் முனையமைவுறு தளமானது, ஒளியானது காந்தப் புலத்தின் திசையில் ஒரு மின்கடத்தாப் பொருளின் ஊடாக செல்லும்போது சுழற்றப்படுகிறது எனக் கண்டறிந்தார்; இவ்விளைவு ஃபாரடே சுழற்சி என்றழைக்கப்படுகிறது.[4] இவ்விளைவே ஒளிக்கும் மின்காந்தவியலுக்கும் தொடர்புள்ளது எனத் தெரிவித்த முதல் நிகழ்வாகும். 1846-இல் ஃபாரடே, ஒளியானது காந்தப்புல வரிகளினூடாக பரவும் இடையூறுகளாக இருக்கலாம் என ஐயமுற்றார்.[5] ஒளியானது அதிக அதிர்வெண் கொண்ட மின்காந்த அதிர்வாகும், அவை ஈதர் போன்ற ஊடகம் ஏதுமின்றியும் பயணிக்கும் என்று 1847-இல் ஃபாரடே தன் கோட்பாட்டை வெளியிட்டார்.
ஃபாரடேயின் இந்த ஆய்வு முடிவுகள் ஜேம்ஸ் கிளார்க் மக்ஸ்வெல் என்பவருக்கு மின்காந்தவியல் மற்றும் ஒளியைப் பற்றி ஆராய்வதற்குத் தூண்டுதலாக அமைந்தது. ஊடகமற்ற வெளியில் பயணிக்கும் மின்காந்த அலைகள் ஒரு குறிப்பிட்ட மாறாத வேகத்தில் பயணிக்கும் என்று மாக்சுவெல் கண்டறிந்தார்; அவ்வேகம், முன்னரே கண்டறியப்பட்ட ஒளியின் வேகத்தோடு ஒத்திருந்தது. இதன்மூலம், ஒளியானது மின்காந்த அலைகளே என மாக்சுவெல் திட்டவட்டமாக முடிவெடுத்தார்; இதனை 1862-ஆம் ஆண்டு On Physical Lines of Force எனும் சஞ்சிகையில் பதிப்பித்தார். 1873-இல் அவர் மின்னியல் மற்றும் காந்தவியல் ஆய்வுக்கட்டுரையைப் (Treatise on electricity and magnetism) பதிப்பித்தார், அதில் மின் மற்றும் காந்தப் புலன்களின் பண்புகளை கணிதவியல் மாதிரிகளில் காட்டியிருந்தார்; இதிலிருந்த சமன்பாடுகள் மாக்சுவெல் சமன்பாடுகள் என்று இன்றளவும் அறியப்படுகின்றன. இதன் பின்னர், ஹென்ரிக் ஹெர்ட்சு என்பவர் தமது ஆய்வகத்தில் ரேடியோ அலைகளை உருவாக்கி மாக்சுவெலின் தத்துவங்களை உறுதிப்படுத்தினார்; அவரது ஆய்வில் அவர் உருவாக்கிய ரேடியோ அலைகள் கட்புலன் ஒளியைப் போலவே, அதாவது எதிரொளித்தல், விலகல், விளிம்பு விளைவுப் பண்புகளைக் கொண்டிருந்ததைக் கண்டார். மாக்சுவெலின் கோட்பாடு மற்றும் ஹெர்ட்சின் ஆய்வுகளே நவீன வானொலி, தொலைக்காட்சி, ராடார், மின்காந்தப் படமாக்கல், கம்பியற்ற தொலைத்தொடர்புகள் உருவாகக் காரணமாக அமைந்தன.
பகவக் கோட்பாட்டில் (குவாண்டம் கோட்பாடு), ஒளியணுக்கள் (ஃபோட்டான்கள்) மாக்சுவெல் மின்காந்தக் கோட்பாட்டில் வரும் அலைகளின் அலைச் சிப்பங்களாகக் கொள்ளப்படுகின்றன. மாக்சுவெலின் மின்காந்தக் கோட்பாட்டால் விவரிக்க இயலாத கட்புலன் ஒளி விளைவுகளை விவரிக்க பகவக் கோட்பாடு தேவைப்படுகிறது (எ-டு: நிறமாலை வரிகள்).
மேலும் பார்க்க
தொகுமேற்கோள்கள்
தொகு- ↑ வேங்கடம், இந்தியத் தொழில்நுட்பக் கழகம். வான சாஸ்திரம். விகடன் பிரசுரம். பன்னாட்டுத் தரப்புத்தக எண் 9788189936228.
- ↑ குட்டீஸ் கார்னர்
- ↑ David Cassidy, Gerald Holton, James Rutherford (2002), Understanding Physics, Birkhäuser, பன்னாட்டுத் தரப்புத்தக எண் 0-387-98756-8
{{citation}}
: CS1 maint: multiple names: authors list (link) - ↑ Longair, Malcolm. Theoretical Concepts in Physics (2003) p. 87.
- ↑ Longair, Malcolm. Theoretical Concepts in Physics (2003) p. 87