நேரியல் கோப்பு
கணிதத்திலும், கணிதத்தின் எல்லாப் பயன்பாடுகளிலும், நேரியல் கோப்பு, நேரியல் உருமாற்றம், நேரியற்செயலி அல்லது நேரியற்செயல்முறை (linear map, transformation, operator) என்ற கருத்து அடிப்படையானது. பல அறிவியல் பயன்பாடுகளிலும், ஏறத்தாழ எல்லா சமுதாயவியல், மருத்துவவியல், உயிரிய-தொழில்நுட்பவியல் பயன்பாடுகளிலும், நேரியல் கோப்புக்குரிய சூழ்நிலை தானாக இல்லாவிட்டாலும், எவ்வளவு தூரம் நேரியல் பண்புகளுடையதாக அச்சூழ்நிலையை மாற்றமுடியும் என்றே ஆராய்ச்சியாளர்கள் முயல்வார்கள். நேரியல் அல்லாத (non-linear) பயன்பாடுகளிலும் நேரியல் சூழ்நிலைக்குத் தோராயப் படுத்துவதே முதல் முயற்சி. ஆக, நேரியல் அல்லாத பயன்பாடுகளிலும் நேரியல் இயற்கணிதச் செயல்பாடுகளே அடிப்படையில் தேவைப்படுவதால், நேரியல் கோப்பு என்பது முழு கணித உலகத்திலும் இன்றியமையாததாகிறது.
வரையறை தொகு
U, V இரு திசையன் வெளிகள், இரண்டுக்கும் திசையிலி களங்கள் ஒன்றே என்று கொள்வோம்.
கீழ்க்கண்ட இரண்டு நிபந்தனைக்குட்பட்டால், ஒரு நேரியல் கோப்பு (உருமாற்றம், செயல்முறை) எனப்படும்:
- (நே.கோ.1): இரண்டும் இல் ஏதாவது இரு திசையன்கள் எனில், ;
- (நே.கோ.2): இலுள்ள எல்லாத் திசையன்கள் க்கும், எல்லா திசையிலிகள் க்கும்,
இங்கு, U ஆட்கள வெளி (Domain Space) என்றும், V பிம்ப வெளி (Image space) என்றும் சொல்லப்படும்.
திசையிலி களம் ஐக் குறிப்பிட்டுச்சொல்லவேண்டியிருந்தால், நேரியல் (கோப்பு) எனக் குறிப்பிடப்படும்.
கூட்டலின் சேர்ப்புப்பண்பின்படி (+), திசையன்களுக்கும், திசையிலிகளுக்கும் பின்வரும் முடிவு உண்மையாக இருக்கும்::[1][2]
வரையறையைப்பின்பற்றிய உடன்விளைவுகள் தொகு
- . இங்கு க்களெல்லாம் அளவெண்கள், எல்லா க்களும் விலுள்ள உறுப்புகள்.
- வின் ஏதாவதொரு அடுக்களத்தின் உறுப்புகளை எங்கு எடுத்துச்செல்கிறதோ அதைப்பொருத்து முழு இன் பண்புகளும் தீர்மனிக்கப்படுகின்றன.
குறிப்பிடத்தக்க இரு நேரியல்கோப்புகள் தொகு
- விலுள்ள ஒவ்வொரு க்கும், என்று வரையறுக்கப்பட்டால் சூனியக்கோப்பு எனப்பெயர் பெறும்.
- விலுள்ள ஒவ்வொரு க்கும், என்று வரையறுக்கப்பட்டால் முற்றொருமைக்கோப்பு எனப்பெயர் பெறும். அதற்குக்குறியீடு .
- அதனால் விலுள்ள ஒவ்வொரு க்கும், .
எடுத்துக்காட்டுகள் தொகு
கீழேயுள்ளவை நேரியல் கோப்புகள்:
- . வரையறை: இது எல்லா புள்ளிகளையும் xy-தளத்தில் பிரதிபலிக்கிறது.
- வரையறை: இலுள்ள ஒவ்வொரு க்கும்
- வரையறை: இலுள்ள எல்லா க்கும்,
- .
- . வரையறை:
- வரையறை: இலுள்ள ஒவ்வொரு க்கும் .
- இங்கு என்பது இன் வகைக்கெழு. இது வகையீட்டு (நேரியல்) கோப்பு எனப்படும்.
- . வரையறை: என்பது இன் வகைக்கெழு. க்கு வகையீட்டு செயல்முறை (Differential Operator) எனப்பெயர்.
- வரையறை: . க்கு தொகையீட்டு செயல்முறை (Integral Operator) எனப்பெயர்.
- வரையறை: . இது ஒரு -நேரியல் கோப்பு.
- இங்கு மெய்யெண்களாலான ஒரு அணி. வரையறை: இலுள்ள ஒவ்வொரு க்கும்
- ( என்பது அணிப்பெருக்கல்).
கீழேயுள்ளவை நேரியல் கோப்புகள் அல்ல:
- ஐ இல் ஒரு குறிப்பிட்ட திசையனாகக்கொள். : வரையறை: விலுள்ள ஒவ்வொரு க்கும்
- . இதற்கு நகர்த்தல் கோப்பு (Translation operator)எனப்பெயர்.
- . வரையறை:
- வரையறை: . இங்கு அளவெண்களத்தை ஆக எடுத்துக்கொண்டால் , இது ஒரு -நேரியல் கோப்பு அல்ல. ஏனென்றால் நே. கோ.2 தவறுகிறது.
நேரியல் கோப்பின் வீச்சு, சுழிவு / உட்கரு) தொகு
- திசையன்வெளிகள், நேரியல் கோப்பு.
- அ-து, இன் எல்லா பிம்பங்களும் சேர்ந்த கணம். இதற்கு இன் வீச்சு (Range of T) என்று பெயர்.
- அ-து, இலுள்ள சூனியத் திசையனுக்கு யால் எடுத்துச் செல்லப்படும் எல்லா -உறுப்புகளும் சேர்ந்த கணம். இதற்கு இன் சுழிவு (Null space of T / kernel of T) அல்லது உட்கரு என்று பெயர்.
- வீச்சு, சுழிவு இரண்டுமே சம்பந்தப்பட்ட திசையன் வெளிகளின் உள்வெளிகள்.
பின்வரும் பரிமாண வாய்பாடு வீச்சளவை சுழிவளவை தேற்றம் என அறியப்படுகிறது:[3]
எண் , இன் அளவை என அழைக்கப்படுகிறது. அதன் குறியீடு: அல்லது .[4][5]
எண் இன் சுழிவு அல்லது உட்கரு என அழைக்கப்படுகிறது. அதன் குறியீடு: அல்லது .[4][5]
இரண்டும் முடிவுறு பரிமாண வெளிகளாக இருந்து இன் அணி உருவகிப்பு எனில், இன் அளவையும் சுழிவும் அணி இன் அளவை மற்றும் சுழிவுக்குச் சமமாக இருக்கும்.
அமைவியங்கள் தொகு
கணிதத்தில், முக்கியமாக நுண்புல இயற்கணிதத்தில், அமைவியம் (Morphism) என்பது கணித அமைப்பு களுக்கிடையேயுள்ள போக்குவரத்து. இரண்டு கணித அமைப்புகளுக்கிடையே அவைகளுக்குள்ள ஏதோ ஒரு அமைப்பை சிதறாமல் காக்கும் ஒரு அமைவியத்திற்குப் பொதுப்பெயர் காப்பமைவியம். அது எந்த அமைப்பைக் காக்கிறதோ அதைப் பொறுத்து அதனுடைய பெயரும் மாறுபடும்.
- திசையன்வெளிகள், நேரியல் கோப்பு. ஆகவும் இருந்தால், க்கு ஒரு அணி உருவகிப்பு இருக்கும். அவ்வணியை என்று குறிப்போம்.
- வெளி அமைவியம் (epimorphism): T ஒரு முழுக்கோப்பானால், அ-து, R(T) = V ஆக இருந்தால், T ஒரு வெளி அமைவியம் எனப்படும். இந்த பட்சத்தில், M இனுடைய நிரல்களின் அளாவல் V ஆக இருக்கும்.
- ஒன்றமைவியம் (monomorphism): T ஒரு ஒன்றுக்கொன்றான இயைபுடைய கோப்பாக இருந்தால், அ-து, க்கும் க்கும் ஒன்றுக்கொன்றான இயைபை ஏற்படுத்தினால், ஒரு ஒன்றமைவியம் எனப்படும். இந்த பட்சத்தில், M இனுடைய நிரல்கள் நேரியல் சார்பற்றதாக இருக்கும்.
- சம அமைவியம் (isomorphism): ஒரு வெளி அமைவியமாகவும், ஒன்றமைவியமாகவும் இருந்தால் அது சம அமைவியம் எனப்படும். இந்த பட்சத்தில் இனுடைய நிரல்கள் க்கு ஒரு அடுக்களமாக அமையும்.
- உள் அமைவியம் (endomorphism): ; அ-து, அரசு வெளியும் பிம்ப வெளியும் ஒன்றாகவே இருந்தால், ஒரு உள் அமைவியம் எனப்படும். இப்பொழுது M ஒரு சதுர அணியாக இருக்கும்.
- தன்னமைவியம் (automorphism): , அ-து, ஒரு உள் அமைவியம்; மேலும் அது ஒரு சம அமைவியமாகவும் இருந்தால், ஒரு தன்னமைவியம் எனப்படும். இந்த பட்சத்தில் M ஒரு வழுவிலா அணியாக இருக்கும்.
குறிப்புகள் தொகு
- ↑ Rudin 1991, ப. 14. Suppose now that X and Y are vector spaces over the same scalar field. A mapping is said to be linear if for all and all scalars and . Note that one often writes , rather than , when is linear.
- ↑ Rudin 1976, ப. 206. A mapping A of a vector space X into a vector space Y is said to be a linear transformation if: for all and all scalars c. Note that one often writes instead of if A is linear.
- ↑ Horn & Johnson 2013, 0.2.3 Vector spaces associated with a matrix or linear transformation, p. 6
- ↑ 4.0 4.1 (Katznelson & Katznelson 2008) p. 52, § 2.5.1
- ↑ 5.0 5.1 (Halmos 1974) p. 90, § 50
நூலாதாரங்கள் தொகு
- Sheldon Axler (2015). Linear Algebra Done Right (3rd ). Springer. பன்னாட்டுத் தரப்புத்தக எண்:978-3-319-11079-0. https://archive.org/details/linearalgebradon0000axle.
- Bronshtein, I. N.; Semendyayev, K. A. (2004). Handbook of Mathematics (4th ). New York: Springer-Verlag. பன்னாட்டுத் தரப்புத்தக எண்:3-540-43491-7.
- Paul Halmos (1974). Finite-Dimensional Vector Spaces (2nd ). Springer. பன்னாட்டுத் தரப்புத்தக எண்:0-387-90093-4.
- Horn, Roger A.; Johnson, Charles R. (2013). Matrix Analysis (Second ). Cambridge University Press. பன்னாட்டுத் தரப்புத்தக எண்:978-0-521-83940-2.
- Yitzhak Katznelson; Katznelson, Yonatan R. (2008). A (Terse) Introduction to Linear Algebra. American Mathematical Society. பன்னாட்டுத் தரப்புத்தக எண்:978-0-8218-4419-9.
- Kubrusly, Carlos (2001). Elements of operator theory. Boston: Birkhäuser. பன்னாட்டுத் தரப்புத்தக எண்:978-1-4757-3328-0. இணையக் கணினி நூலக மையம்:754555941.
- Lua error in Module:Citation/CS1 at line 1529: attempt to call field 'has_accept_as_written' (a nil value).
- வார்ப்புரு:Rudin Walter Functional Analysis
- Walter Rudin (1976). Principles of Mathematical Analysis. Walter Rudin Student Series in Advanced Mathematics (3rd ). New York: McGraw–Hill. பன்னாட்டுத் தரப்புத்தக எண்:978-0-07-054235-8. https://archive.org/details/PrinciplesOfMathematicalAnalysis.
- வார்ப்புரு:Rudin Walter Functional Analysis
- வார்ப்புரு:Schaefer Wolff Topological Vector Spaces
- வார்ப்புரு:Schechter Handbook of Analysis and Its Foundations
- வார்ப்புரு:Swartz An Introduction to Functional Analysis
- Loring W. Tu (2011). An Introduction to Manifolds (2nd ). Springer. பன்னாட்டுத் தரப்புத்தக எண்:978-0-8218-4419-9.
- வார்ப்புரு:Wilansky Modern Methods in Topological Vector Spaces