உள்வட்டப்புள்ளியுரு
உள்வட்டப்புள்ளியுரு (hypocycloid) என்பது ஒரு சிறிய வட்டமானது அதைவிடப் பெரியதொரு நிலையான வட்டத்துக்குள் அதனைத் தொட்டவாறே நழுவாமல் உருளும் போது, உருளும் வட்டத்தின் மீது அமைந்த ஒரு புள்ளியின் பாதையை வரையக் கிடைக்கும் வளைவரை ஆகும். இது ஒரு வகைச் சில்லுரு ஆகும். வட்டப்புள்ளியுருவிற்கும் உள்வட்டப்புள்ளியுருவிற்கும் உள்ள வேறுபாடு உருளும் வட்டம் எதன் மீது உருளுகிறது என்பதில் உள்ளது. வட்டப்புள்ளியுருவில் உருளும் வட்டம் ஒரு நிலையான கோட்டின் மீதும் உள்வட்டப்புள்ளியுருவில் உருளும் வட்டம் ஒரு நிலையான வட்டத்துக்குள்ளும் உருள்கின்றன.
உருளும் வட்டமானது நிலையான வட்டத்திற்கு வெளியே உருளும்போது உருளும் வட்டத்தின் மீது அமைந்த ஒரு புள்ளியின் பாதையை வரையக் கிடைக்கும் வளைவரை வெளிவட்டப்புள்ளியுரு ஆகும்.
பண்புகள்
தொகுஉருளும் சிறுவட்டத்தின் ஆரம் r, வட்டத்தின் ஆரம் R = kr எனில் உள்வட்டப்புள்ளியுருவின் துணையலகுச் சமன்பாடுகள்:
- (அல்லது)
- k ஒரு முழு எண் எனில், உள்வட்டப்புள்ளியுரு மூடிய வளைவரையாகவும் k கூர்ப்புள்ளிகளை உடையதாகவும் இருக்கும். (கூர்ப்புள்ளிகளில் வளைவரை, வகையிடக்கூடியதல்ல)
- k =2 எனில், உள்வட்டப்புள்ளியுரு ஒரு நேர்கோடு. இவ்வகையை முதலாவதாக விளக்கிய இத்தாலியக் கணிதவியலாளர் ஜிரோலமொ கார்டனோ (Girolamo Cardano) இன் பெயரால் இதில் வட்டங்கள் கார்டனொ வட்டங்கள் ((Cardano circles) என அழைக்கப்படுகின்றன. இவ்வகை உள்வட்டப்புள்ளியுருக்கள் அதிவேக அச்சு இயந்திர தொழில்நுட்பத்தில் பயன்படுத்தப்படுகின்றன.
- k ஒரு விகிதமுறு எண் மற்றும் அதன் எளிய வடிவம்: k = p/q எனில், இவ்வளைவரை p கூர்ப்புள்ளிகளைக் கொண்டிருக்கும்.
- k ஒரு விகிதமுறா எண் எனில், இவ்வளைவரை மூடியதாக இல்லாமல், பெரிய வட்டத்திற்கும் R − 2r ஆரமுள்ள மற்றொரு வட்டத்திற்கும் இடையேயுள்ள இடைவெளியை நிரப்பியவாறு அமையும்.
எடுத்துக்காட்டுகள்
தொகுதருவிக்கப்பட்ட வளைவரைகள்
தொகு- ஒரு உள்வட்டப்புள்ளியுருவின் மலரி அதே உள்வட்டப்புள்ளியுருவின் உருப்பெருக்கமாக இருக்கும்.
- ஒரு உள்வட்டப்புள்ளியுருவின் கூம்பி அதே உள்வட்டப்புள்ளியுருவின் உருக்குறுக்கமாக இருக்கும்[1]
- ஒரு உள்வட்டப்புள்ளியுருவின் மையத்தைத் துருவப்புள்ளியாகக் கொண்ட அதன் பாத வளைவரை (pedal curve) ஒரு ரோசா வளைவரையாகும் (rose curve).
- ஒரு உள்வட்டப்புள்ளியுருவின் சமகோணத் தொடுகோட்டு முட்டுவரையும் ஒரு உள்வட்டப்புள்ளியுருவாகவே இருக்கும்.
மேற்கோள்கள்
தொகு- J. Dennis Lawrence (1972). A catalog of special plane curves. Dover Publications. pp. 168, 171–173. பன்னாட்டுத் தரப்புத்தக எண் 0-486-60288-5.
வெளி இணைப்புகள்
தொகு- O'Connor, John J.; Robertson, Edmund F., "Hypocycloid", MacTutor History of Mathematics archive, புனித ஆண்ட்ரூசு பல்கலைக்கழகம்.
- A free Javascript tool for generating Hypocyloid curves பரணிடப்பட்டது 2008-12-11 at the வந்தவழி இயந்திரம்