ஒழுங்கு பல்கோணி
குவிவு ஒழுங்கு n-கோணிகள் | |
---|---|
விளிம்புகள், உச்சிகள் | n |
இசுலாபிலிக் குறியீடு | {n} |
Coxeter–Dynkin diagram | |
சமச்சீர் குலம் | Dn, வரிசை: 2n |
இருமப் பல்கோணம் | தன்-இருமம் |
பரப்பளவு (பக்க நீளம்: s) |
|
உட்கோணம் | |
உட்கோணக் கூடுதல் | |
உள்வட்ட விட்டம் | |
சுற்றுவட்ட விட்டம் | |
பண்புகள் | குவிவுப் பல்கோணம், வட்டப் பல்கோணி, சமபக்கப் பல்கோணி, சமகோணப் பல்கோணி |
யூக்ளிடிய வடிவவியலில், ஒரு பல்கோணத்தின் எல்லாப் பக்கங்களும் சமமாகவும், எல்லாக் கோணங்களும் சமமாகவும் இருந்தால் அந்தப் பல்கோணமானது ஒழுங்குப் பல்கோணம் அல்லது ஒழுங்குப் பல்கோணி (regular polygon) என அழைக்கப்படும். இவை குவிவுப் பல்கோணங்களாகவோ, நாள்மீன் பல்கோணங்களாகவோ இருக்கலாம். ஒரு பல்கோணத்தின் சுற்றளவு அல்லது பரப்பளவில் மாற்றமில்லாமல், அதன் பக்கங்களின் எண்ணிக்கையை அதிகரிக்க அதிகரிக்க, அப்பல்கோணம் தோராயமாக ஒரு வட்டமாக மாறும். பல்கோணத்தின் பக்கநீளம் மாறாமல் பக்கங்களின் எண்ணிக்கையை அதிகரிக்க, அதிகரிக்க பல்கோணம், ஒழுங்கான முடிவிலாப் பல்கோணமாக மாறும்.
பொதுப் பண்புகள்
தொகுஇப்பகுதியில் தரப்பட்டுள்ள பண்புகள் குவிவு, நாள்மீன் ஆகிய இருவகையான ஒழுங்கு பல்கோணிகளுக்கும் பொருந்தும்
- n-பக்கங்களுடைய ஒழுங்குப் பல்கோணமானது n வரிசை சுழற்சி சமச்சீர் உடையது.
ஒரு ஒழுங்குப் பல்கோணத்தின் எல்லா உச்சிப்புள்ளிகளும் ஒரே வட்டத்தின் மேல் அமையும். எனவே ஒழுங்குப் பல்கோணங்கள் வட்டப் பல்கோணங்கள் ஆகும்.
- ஒழுங்கு பல்கோணத்தின் ஒவ்வொரு பக்கத்தையும் நடுப்புள்ளியில் தொடும் உள் வட்டம் உண்டு. எனவே ஒழுங்குப் பல்கோணங்கள் தொடு பல்கோணங்கள் ஆகும்.
- n இன் ஒற்றைப் பகா எண் காரணிகள், வெவ்வேறான ஃபெர்மா எண் எண்களாக "இருந்தால், இருந்தால் மட்டுமே", n-பக்க ஒழுங்குப் பல்கோணத்தை கவராயம்-நேர்விளிம்பு கொண்டு வரைய முடியும்.
சமச்சீர்மை
தொகுஒரு n-பக்க ஒழுங்கு பல்கோணத்தின் சமச்சீர்மை குலமானது, இருமுகக்குலமாக (Dn, வரிசை 2n) இருக்கும்: D2, D3, D4, ...
Cn இலுள்ள சுழற்சிகளும், பல்கோணத்தின் மையப்புள்ளி வழியாகச் செல்லும் n அச்சுகளில் நிகழும் எதிரொளிப்பு சமச்சீர்மைகளும் இதில் அடங்கும். n இரட்டை எண் எனில், n அச்சுகளில் பாதி அச்சுகள் இரு எதிர்முனைகள் வழியாகவும், அடுத்த பாதி அச்சுகள் எதிர்ப்பக்கங்களின் நடுப்புள்ளிகள் வழியாகவும் செல்லும். n ஒற்றை எண் எனில், எல்லா அச்சுகளும் ஒரு முனை மற்றும் அதன் எதிர்ப்பக்க நடுப்புள்ளியின் வழியாகச் செல்லும்.
ஒழுங்கு குவிவுப் பல்கோணங்கள்
தொகுஅனைத்து ஒழுங்கு எளிய பல்கோணங்களும் குவிவுப் பல்கோணங்களாக இருக்கும். n-பக்கங்கள் கொண்ட ஒழுங்கு குவிவுப் பல்கோணம், அதன் இசுலாபிலிக் குறியீட்டால் {n} குறிப்பப்படுகிறது.
எடுத்துக்கொள்ளப்படும் பல்கோணங்கள் அனைத்துமே ஒழுங்குப் பல்கோணங்களாக இருக்கும் சூழல்களில் "ஒழுங்கு" என்ற முன்னொட்டு இல்லாமலேயே அவை குறிப்பிடப்படுகின்றன. எடுத்துக்காட்டாக சீர் பன்முகிகளின் எல்லா முகங்களும் ஒழுங்கு பல்கோணங்களாகவே இருக்கும். அதனால் அவற்றின் முகங்களைக் குறிப்பிடும்போது "ஒழுங்கு" என்று குறிப்பிடாமல் வெறுமனே முக்கோணம், சதுரம், ஐங்கோணம், ... என்று குறிப்பிடப்படுகிறது.
கோணங்கள்
தொகுஒரு ஒழுங்கு குவிவு n-கோணத்தின்
ஒரு உட்கோணத்தின் அளவு:
- பாகைகள்;
- ரேடியன்கள்; அல்லது
- முழுச் சுற்றுகள்,
ஒரு வெளிக்கோணத்தின் அளவு (ஒரு வெளிக்கோணம் அதன் உட்கோணத்தின் மிகைநிரப்பு கோணம்:
- பாகைகள்.
எல்லா வெளிக்கோணங்களின் கூட்டுத்தொகை 360 பாகைகள் அல்லது 2π ரேடியன்கள் அல்லது ஒரு முழுச் சுற்றுக்குச் சமமாக இருக்கும்.
ஒரு ஒழுங்கு குவிவு n-கோணத்தின் பக்கங்களின் எண்ணிக்கையான n இன் அளவு முடிவிலியை நோக்கி நெருங்கினால் உட்கோணத்தின் அளவு 180 பாகைகளை நெருங்கும். 10,000 பக்கங்கள் கொண்ட பல்கோணத்தின் உட்கோண அளவு 179.964°. பக்கங்களின் எண்ணிக்கை அதிகரிக்க, அதிகரிக்க உட்கோணத்தின் அளவு 180° க்கு மிக அருகிலிருக்கும். இதனால் அப்பல்கோணத்தின் வடிவம் வட்டத்தை நெருங்கும். எனினும் அது ஒருபோதும் வட்டமாக மாறாது. உட்கோணத்தின் அளவு 180° க்குச் சமமாக ஒருபோதும் மாறாது. ஏனெனில் அந்நிலையில் பல்கோணத்தின் சுற்றுவளைகோடு ஒரு நேர்கோடாகிவிடும், இதன் காரணமாகவே ஒரு வட்டத்தை முடிவிலி பக்கங்களாலான பல்கோணமாகக் கருதமுடியாது.
மூலைவிட்டங்கள்
தொகுn > 2 எனில் மூலைவிட்டங்களின் எண்ணிக்கை:
- ; அதாவது ஒரு முக்கோணம், சதுரம், ஐங்கோணம், அறுகோணம்... இவற்றின் மூலைவிட்டங்களின் எண்ணிக்கை:
- 0, 2, 5, 9, ...,
மூலைவிட்டங்கள் ஒரு பல்கோணத்தைப் பிரிக்கும் பகுதிகளின் எண்ணிக்கை:
- 1, 4, 11, 24, ... (A007678).
ஓரலகு ஆரமுள்ள வட்டத்திற்குள் வரையப்பட்ட ஒழுங்கு n-கோணத்தில், அதன் ஒரு முனையிலிருந்து மற்ற முனைகளின் தொலைவுகளின் பெருக்கற்பலன் (அடுத்துள்ள முனைகள் மற்றும் மூலைவிட்டங்களால் இணைப்பட்ட முனைகள்) n ஆக இருக்கும்.
தளத்திலமைந்த புள்ளிகள்
தொகுஒரு எளியச் ஒழுங்கு n-கோணியின் சுற்றுவட்ட ஆரம் R; மேலும் அதன் உச்சிகளுக்கும் தளத்திலமைந்த ஏதாவது ஒரு புள்ளிக்கும் இடைப்பட்ட தூரம் di எனில் கீழுள்ள முடிவு கிடைக்கும்:[1]
n-கோணியின் மையப்புள்ளிக்கும் தளத்திலமைந்த ஏதாவது ஒரு புள்ளிக்கும் இடைப்பட்ட தூரம் , அப்பல்கோணியின் சுற்றுவட்ட ஆரம் எனில்:[2]
- ; = 1, 2, …, .
உள்ளமையும் புள்ளிகள்
தொகுஒரு ஒழுங்கு குவிவு n-கோணியின் உட்புறமுள்ள ஏதாவது ஒரு புள்ளிக்கும், அதன் n பக்கங்கள் ஒவ்வொன்றுக்கும் இடைப்பட்ட செங்குத்துத் தூரங்களின் கூட்டுத்தொகையானது, அப்பல்கோணியின் பக்க நடுக்கோட்டின் நீளத்தின் n மடங்காக இருக்கும்.[3]:p. 72[4][5]
சுற்றுவட்ட ஆரம்
தொகுசுற்றுவட்ட ஆரம் R; பல்கோணியின் பக்க நீளம் s; பல்கோணியின் பக்கநடுக்கோட்டு நீளம் a எனில்:
ஒழுங்கு n-கோணியின் ஒவ்வொரு உச்சியிலிருந்தும் அப்பல்கோணியின் சுற்றுவட்டத்திற்கு தொடுகோடாக அமையும் எந்தவொரு கோட்டிற்கும் வரையப்படும் செங்குத்து தூரங்களின் கூட்டுத்தொகையானது அப்பல்கோணியின் சுற்றுவட்ட ஆரத்தைப்போல n மடங்காக இருக்கும்.[3]:p. 73
ஒழுங்கு n-கோணியின் ஒவ்வொரு உச்சிக்கும் அப்பல்கோணியின் சுற்றுவட்டத்தின் மேலுள்ள ஏதாவது ஒரு புள்ளிக்கும் இடைப்பட்ட தூரங்களின் வர்க்கங்களின் கூட்டுத்தொகையின் அளவு:
- R - சுற்றுவட்ட ஆரம்.[3]:p.73
ஒழுங்கு n-கோணியின் ஒவ்வொரு பக்கத்தின் நடுப்புள்ளியிலிருந்தும் அப்பல்கோணியின் சுற்றுவட்டத்தின் மேலுள்ள ஏதாவது ஒரு புள்ளிக்கும் இடைப்பட்ட தூரங்களின் வர்க்கங்களின் கூட்டுத்தொகையின் அளவு[3]:p. 73:
- 2nR2 − 14ns2, இதில் n-கோணியின் பக்கநீளம் s, சுற்றுவட்ட ஆரம் R
ஒழுங்கு n-கோணியின் ஒவ்வொரு உச்சிக்கும் அப்பல்கோணியின் சுற்றுவட்டத்தின் மேலுள்ள ஏதாவது ஒரு புள்ளிக்கும் இடைப்பட்ட தூரங்கள் எனில்:[2]
- .
பரப்பளவு
தொகுஒரு ஒழுங்கு குவிவு n-கோணியின் பக்க நீளம் s; சுற்றுவட்ட ஆரம் R; பல்கோணப் பக்கநடுக்கோட்டு நீளம் a; சுற்றளவு p எனில் அதன் பரப்பளவு A:[6][7]
ஒழுங்கு குவிவு n-கோணியின் பக்க நீளம் s = 1; சுற்றுவட்ட ஆரம் R = 1; பல்கோணப் பக்கநடுக்கோட்டு நீளம் a = 1 எனில் பரப்பளவுகளின் அட்டவணை:[8]
பக்கங்களின் எண்ணிக்கை | s = 1 எனில் பரப்பளவு | R = 1 எனில் பரப்பளவு | a = 1 எனில் பரப்பளவு | |||||
---|---|---|---|---|---|---|---|---|
சரியான அளவு | தோராய அளவு | சரியான அளவு | தோராய அளவு | சுற்றுவட்டத்தைப் பொறுத்து பரப்பளவு | சரியான அளவு | தோராய அளவு | உள்வட்டம் பொறுத்து பரப்பளவு | |
n | ||||||||
3 | 0.433012702 | 1.299038105 | 0.4134966714 | 5.196152424 | 1.653986686 | |||
4 | 1 | 1.000000000 | 2 | 2.000000000 | 0.6366197722 | 4 | 4.000000000 | 1.273239544 |
5 | 1.720477401 | 2.377641291 | 0.7568267288 | 3.632712640 | 1.156328347 | |||
6 | 2.598076211 | 2.598076211 | 0.8269933428 | 3.464101616 | 1.102657791 | |||
7 | 3.633912444 | 2.736410189 | 0.8710264157 | 3.371022333 | 1.073029735 | |||
8 | 4.828427125 | 2.828427125 | 0.9003163160 | 3.313708500 | 1.054786175 | |||
9 | 6.181824194 | 2.892544244 | 0.9207254290 | 3.275732109 | 1.042697914 | |||
10 | 7.694208843 | 2.938926262 | 0.9354892840 | 3.249196963 | 1.034251515 | |||
11 | 9.365639907 | 2.973524496 | 0.9465022440 | 3.229891423 | 1.028106371 | |||
12 | 11.19615242 | 3 | 3.000000000 | 0.9549296586 | 3.215390309 | 1.023490523 | ||
13 | 13.18576833 | 3.020700617 | 0.9615188694 | 3.204212220 | 1.019932427 | |||
14 | 15.33450194 | 3.037186175 | 0.9667663859 | 3.195408642 | 1.017130161 | |||
15 | [9] | 17.64236291 | [10] | 3.050524822 | 0.9710122088 | [11] | 3.188348426 | 1.014882824 |
16 | [12] | 20.10935797 | 3.061467460 | 0.9744953584 | [13] | 3.182597878 | 1.013052368 | |
17 | 22.73549190 | 3.070554163 | 0.9773877456 | 3.177850752 | 1.011541311 | |||
18 | 25.52076819 | 3.078181290 | 0.9798155361 | 3.173885653 | 1.010279181 | |||
19 | 28.46518943 | 3.084644958 | 0.9818729854 | 3.170539238 | 1.009213984 | |||
20 | [14] | 31.56875757 | [15] | 3.090169944 | 0.9836316430 | [16] | 3.167688806 | 1.008306663 |
100 | 795.5128988 | 3.139525977 | 0.9993421565 | 3.142626605 | 1.000329117 | |||
1000 | 79577.20975 | 3.141571983 | 0.9999934200 | 3.141602989 | 1.000003290 | |||
10,000 | 7957746.893 | 3.141592448 | 0.9999999345 | 3.141592757 | 1.000000033 | |||
1,000,000 | 79577471545 | 3.141592654 | 1.000000000 | 3.141592654 | 1.000000000 |
ஒழுங்கு நாள்மீன் பல்கோணிகள்
தொகு2 < 2q < p, gcd(p, q) = 1
| ||||
---|---|---|---|---|
இசுலாபிலிக் குறியீடு | {p/q} | |||
உச்சி, விளிம்புகள் | p | |||
அடர்த்தி | q | |||
Coxeter diagram | ||||
சமச்சீர்மை குலம் | இருமுகக் குலங்கள் (Dp) | |||
இருமப் பல்கோணி | தன்-இருமம் | |||
உட்கோணம் (பாகைகள்) |
[17] |
ஒழுங்கு நாள்மீன் பல்கோணிகள் குவிவில்லா ஒழுங்குப் பல்கோணிகளாகும். நாள்மீன் ஐங்கோணி குவிவில்லா ஒழுங்குப் பல்கோணிக்கு ஒரு நல்ல எடுத்துக்காட்டாகும். நாள்மீன் ஐங்கோணியில் ஐங்கோணத்தைப் போலவே ஐந்து உச்சிகள் இருக்கும். ஆனால் அதில் ஒன்றுவிட்ட உச்சிகள் ஒன்றுடன் ஒன்று இணைக்கப்பட்டிருக்கும்.
n-பக்க நாள்மீன் பல்கோணியில் இசுலாபிலி குறியீடானது பல்கோணியின் அடர்த்தியைக் (m) குறிக்கும்வகையில் {n/m} என மாற்றப்படுகிறது. m = 2 எனில் அப்பல்கோணியின் ஒவ்வொரு இரண்டாவது உச்சியும் இணைக்கப்படும். m = 3 எனில், ஒவ்வொரு மூன்றாவது புள்ளியும் இணைக்கப்படும். நாள்மீன் பல்கோணியின் சுற்றுக்கோடு அதன் நடுப்புள்ளியை சுற்றி m தடவைகள் அமைந்திருக்கும்.
12 பக்கங்கள் வரையுடைய ஒழுங்கு நாள்மீன்கள் (சிதைவுறாதவை):
- நாள்மீன் ஐங்கோணி – {5/2}
- நாள்மீன் எழுகோணி – {7/2}, {7/3}
- நாள்மீன் எண்கோணி – {8/3}
- நாள்மீன் நவகோணி – {9/2}, {9/4}
- நாள்மீன் தசகோணி – {10/3}
- நாள்மீன் பதினொருகோணி – {11/2}, {11/3}, {11/4}, {11/5}
- நாள்மீன் பன்னிருகோணி – {12/5}
m, n இரண்டும் சார்பாகா பகாஎண்களாக இருக்கவேண்டும். இல்லையென்றால் அந்தந்த ஒழுங்கு நாள்மீன் பல்கோணிகளின் வடிவங்கள் சிதைவுறும். 12 பக்கங்கள் வரைகொண்ட அத்தகைய வடிவங்கள்:
குறிப்புகள்
தொகு- ↑ Park, Poo-Sung. "Regular polytope distances", Forum Geometricorum 16, 2016, 227-232. http://forumgeom.fau.edu/FG2016volume16/FG201627.pdf
- ↑ 2.0 2.1 Meskhishvili, Mamuka (2020). "Cyclic Averages of Regular Polygons and Platonic Solids". Communications in Mathematics and Applications 11: 335–355. https://www.rgnpublications.com/journals/index.php/cma/article/view/1420/1065.
- ↑ 3.0 3.1 3.2 3.3 Johnson, Roger A., Advanced Euclidean Geometry, Dover Publ., 2007 (orig. 1929).
- ↑ Pickover, Clifford A, The Math Book, Sterling, 2009: p. 150
- ↑ Chen, Zhibo, and Liang, Tian. "The converse of Viviani's theorem", The College Mathematics Journal 37(5), 2006, pp. 390–391.
- ↑ "Math Open Reference". பார்க்கப்பட்ட நாள் 4 Feb 2014.
- ↑ "Mathwords".
- ↑ Results for R = 1 and a = 1 obtained with Maple, using function definition:
The expressions for n = 16 are obtained by twice applying the tangent half-angle formula to tan(π/4)
f := proc (n) options operator, arrow; [ [convert(1/4*n*cot(Pi/n), radical), convert(1/4*n*cot(Pi/n), float)], [convert(1/2*n*sin(2*Pi/n), radical), convert(1/2*n*sin(2*Pi/n), float), convert(1/2*n*sin(2*Pi/n)/Pi, float)], [convert(n*tan(Pi/n), radical), convert(n*tan(Pi/n), float), convert(n*tan(Pi/n)/Pi, float)] ] end proc
- ↑
- ↑
- ↑
- ↑
- ↑
- ↑
- ↑
- ↑
- ↑ Kappraff, Jay (2002). Beyond measure: a guided tour through nature, myth, and number. World Scientific. p. 258. பன்னாட்டுத் தரப்புத்தக எண் 978-981-02-4702-7.
மேற்கோள்கள்
தொகு- Coxeter (1948). Regular Polytopes. Methuen and Co..
- Grünbaum, B.; Are your polyhedra the same as my polyhedra?, Discrete and comput. geom: the Goodman-Pollack festschrift, Ed. Aronov et al., Springer (2003), pp. 461–488.
- Poinsot, L.; Memoire sur les polygones et polyèdres. J. de l'École Polytechnique 9 (1810), pp. 16–48.
வெளியிணைப்புகள்
தொகு- Weisstein, Eric W., "Regular polygon", MathWorld.
- Regular Polygon description With interactive animation
- Incircle of a Regular Polygon With interactive animation
- Area of a Regular Polygon Three different formulae, with interactive animation
- Renaissance artists' constructions of regular polygons பரணிடப்பட்டது 2007-06-25 at the வந்தவழி இயந்திரம் at Convergence பரணிடப்பட்டது 2006-02-12 at the வந்தவழி இயந்திரம்